Some fixed point theorems and existence of weak solutions of Volterra integral equation under Henstock-Kurzweil-Pettis integrability

Afif Ben Amar

Commentationes Mathematicae Universitatis Carolinae (2011)

  • Volume: 52, Issue: 2, page 177-190
  • ISSN: 0010-2628

Abstract

top
In this paper we examine the set of weakly continuous solutions for a Volterra integral equation in Henstock-Kurzweil-Pettis integrability settings. Our result extends those obtained in several kinds of integrability settings. Besides, we prove some new fixed point theorems for function spaces relative to the weak topology which are basic in our considerations and comprise the theory of differential and integral equations in Banach spaces.

How to cite

top

Ben Amar, Afif. "Some fixed point theorems and existence of weak solutions of Volterra integral equation under Henstock-Kurzweil-Pettis integrability." Commentationes Mathematicae Universitatis Carolinae 52.2 (2011): 177-190. <http://eudml.org/doc/246685>.

@article{BenAmar2011,
abstract = {In this paper we examine the set of weakly continuous solutions for a Volterra integral equation in Henstock-Kurzweil-Pettis integrability settings. Our result extends those obtained in several kinds of integrability settings. Besides, we prove some new fixed point theorems for function spaces relative to the weak topology which are basic in our considerations and comprise the theory of differential and integral equations in Banach spaces.},
author = {Ben Amar, Afif},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {fixed point theorems; Henstock-Kurzweil-Pettis integral; Volterra equation; measure of weak noncompactness; fixed point theorems; Henstock-Kurzweil-Pettis integral; Volterra integral equation; measure of weak noncompactness},
language = {eng},
number = {2},
pages = {177-190},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some fixed point theorems and existence of weak solutions of Volterra integral equation under Henstock-Kurzweil-Pettis integrability},
url = {http://eudml.org/doc/246685},
volume = {52},
year = {2011},
}

TY - JOUR
AU - Ben Amar, Afif
TI - Some fixed point theorems and existence of weak solutions of Volterra integral equation under Henstock-Kurzweil-Pettis integrability
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 2
SP - 177
EP - 190
AB - In this paper we examine the set of weakly continuous solutions for a Volterra integral equation in Henstock-Kurzweil-Pettis integrability settings. Our result extends those obtained in several kinds of integrability settings. Besides, we prove some new fixed point theorems for function spaces relative to the weak topology which are basic in our considerations and comprise the theory of differential and integral equations in Banach spaces.
LA - eng
KW - fixed point theorems; Henstock-Kurzweil-Pettis integral; Volterra equation; measure of weak noncompactness; fixed point theorems; Henstock-Kurzweil-Pettis integral; Volterra integral equation; measure of weak noncompactness
UR - http://eudml.org/doc/246685
ER -

References

top
  1. Agarwal R., O'Regan D., Sikorska-Nowak A., 10.1017/S0004972708000944, Bull. Austral. Math. Soc. 78 (2008), 507–522. MR2472285DOI10.1017/S0004972708000944
  2. Aliprantis C.D., Border K.C., Infinite Dimensional Analysis, third edition, Springer, Berlin, 2006. Zbl1156.46001MR2378491
  3. Ben Amar A., Mnif M., Leray-Schauder alternatives for weakly sequentially continuous mappings and application to transport equation, Math. Methods Appl. Sci. 33 (2010), no. 1, 80–90. Zbl1193.47056MR2591226
  4. Bugajewski D., On the existence of weak solutions of integral equations in Banach spaces, Comment. Math. Univ. Carolin. 35 (1994), no. 1, 35–41. Zbl0816.45012MR1292580
  5. Chew T.S., Flordeliza F., On x ' = f ( t , x ) and Henstock-Kurzweil integrals, Differential Integral Equations 4 (1991), 861–868. Zbl0733.34004MR1108065
  6. Cichoń M., Kubiaczyk I., Sikorska A., 10.1023/B:CMAJ.0000042368.51882.ab, Czechoslovak. Math. J. 54 (129) (2004), 279–289. MR2059250DOI10.1023/B:CMAJ.0000042368.51882.ab
  7. Cichoń M., Weak solutions of differential equations in Banach spaces, Discuss. Math. Differential Incl. 15 (1995), 5–14. MR1344523
  8. Cichoń M., Kubiaczyk I., 10.1007/BF01189827, Arch. Math. (Basel) 63 (1994), 251–257. MR1287254DOI10.1007/BF01189827
  9. Cramer E., Lakshmikantham V., Mitchell A.R., On the existence of weak solution of differential equations in nonreflexive Banach spaces, Nonlinear Anal. 2 (1978), 169–177. MR0512280
  10. DeBlasi F.S., On a property of the unit sphere in Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie (NS) 21 (1977), 259–262. MR0482402
  11. Diestel J., Uhl J.J., Vector Measures, Mathematical Surveys, 15, American Mathematical Society, Providence, R.I., 1977. Zbl0521.46035MR0453964
  12. Di Piazza L., Kurzweil-Henstock type integration on Banach spaces, Real Anal. Exchange 29 (2003/04), no. 2, 543–555. Zbl1083.28007MR2083796
  13. Dugundji J., Topology, Allyn and Bacon, Inc., Boston, 1966. Zbl0397.54003MR0193606
  14. Federson M., Bianconi R., Linear integral equations of Volterra concerning Henstock integrals, Real Anal. Exchange 25 (1999/00), 389–417. Zbl1015.45001MR1758896
  15. Federson M., Táboas P., 10.1016/S0362-546X(01)00769-6, Nonlinear Anal. 50 (1998), 389–407. MR1906469DOI10.1016/S0362-546X(01)00769-6
  16. Gamez J.L., Mendoza J., On Denjoy-Dunford and Denjoy-Pettis integrals, Studia Math. 130 (1998), 115–133. Zbl0971.28009MR1623348
  17. Gordon R.A., 10.1216/rmjm/1181072923, Rocky Mountain J. Math. (21) (1991), no. 3, 923–949. MR1138145DOI10.1216/rmjm/1181072923
  18. Gordon R.A., The Integrals of Lebesgue, Denjoy, Perron and Henstock, Graduate Studies in Mathematics, 4, American Mathematical Society, Providence, RI, 1994. Zbl0807.26004MR1288751
  19. Kelley J., General Topology, D. Van Nostrad Co., Inc., Toronto-New York-London, 1955. Zbl0518.54001MR0070144
  20. Kubiaczyk I., Szufla S., Kenser's theorem for weak solutions of ordinary differential equations in Banach spaces, Publ. Inst. Math. (Beograd) (N.S.) 32(46) (1982), 99–103. MR0710975
  21. Kubiaczyk I., On the existence of solutions of differential equations in Banach spaces, Bull. Polish Acad. Sci. Math. 33 (1985), 607–614. Zbl0607.34055MR0849409
  22. Kurtz D.S., Swartz C.W., Theories of Integration: The Integrals of Riemann, Lebesgue, Henstock-Kurzweil, and Mcshane, World Scientific, Singapore, 2004. Zbl1072.26005MR2081182
  23. Martin R.H., Nonlinear Operators and Differential Equations in Banach Spaces, Wiley-Interscience, New York-London-Sydney, 1976. Zbl0333.47023MR0492671
  24. Mitchell A.R., Smith C., An existence theorem for weak solutions of differential equations in Banach spaces, in Nonlinear Equations in Abstract Spaces (Proc. Internat. Sympos., Univ. Texas, Arlington, Tex, 1977), pp. 387–403, Academic Press, New York, 1978. Zbl0452.34054MR0502554
  25. Lakshmikantham V., Leela S., Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, Oxford-New York, 1981. Zbl0456.34002MR0616449
  26. Lee P.Y., Lanzhou Lectures on Henstock Integration, Series in Real Analysis, 2, World Scientific, Teaneck, NJ, 1989. Zbl0699.26004MR1050957
  27. Liu L., Guo F., Wu C., Wu Y., 10.1016/j.jmaa.2004.10.069, J. Math. Anal. Appl. 309 (2005), 638–649. Zbl1080.45005MR2154141DOI10.1016/j.jmaa.2004.10.069
  28. O'Regan D., 10.1007/s000130050243, Arch. Math. (Basel) 71 (1998), 123–136. Zbl0918.47053MR1631480DOI10.1007/s000130050243
  29. Rudin W., Functional Analysis, 2nd edition, McGraw-Hill, New York, 1991. Zbl0867.46001MR1157815
  30. Satco B., 10.1007/s10587-006-0078-5, Czechoslovak Math. J. 56(131) (2006), 1029–1047. MR2261675DOI10.1007/s10587-006-0078-5
  31. Satco B., 10.7151/dmdico.1066, Discuss. Math. Differ. Incl. Control Optim. 26 (2006), 87–101. Zbl1131.45001MR2330782DOI10.7151/dmdico.1066
  32. Satco B., 10.1016/j.jmaa.2007.02.050, J. Math. Anal. Appl. 336 (2007), 44–53. Zbl1123.45004MR2348489DOI10.1016/j.jmaa.2007.02.050
  33. Schwabik S., The Perron integral in ordinary differential equations, Differential Integral Equations 6 (1993), 863–882. Zbl0784.34006MR1222306
  34. Schwabik S., Guoju Y., Topics in Banach Space Integration, World Scientific, Hackensack, NJ, 2005. Zbl1088.28008MR2167754
  35. Sikorska A., Existence theory for nonlinear Volterra integral and differential equations, J. Inequal. Appl. 6 (3) (2001), 325–338. Zbl0992.45006MR1889019
  36. Sikorska-Nowak A., Retarded functional differential equations in Banach spaces and Henstock-Kurzweil integrals, Demonstratio Math. 35 (2002), no. 1, 49–60. Zbl1011.34066MR1883943
  37. Sikorska-Nowak A., 10.4064/ap83-3-7, Ann. Polon. Math. 83 (2004), no. 3,257–267. Zbl1101.45006MR2111712DOI10.4064/ap83-3-7
  38. Sikorska-Nowak A., The existence theory for the differential equation x ( m ) t = f ( t , x ) in Banach spaces and Henstock-Kurzweil integral, Demonstratio Math. 40 (2007), no. 1, 115–124. Zbl1128.34037MR2330370
  39. Sikorska-Nowak A., 10.7151/dmdico.1087, Discuss. Math. Differ. Incl. Control Optim. 27 (2007), 315–327. Zbl1149.34053MR2413816DOI10.7151/dmdico.1087
  40. Sikorska-Nowak A., Existence of solutions of nonlinear integral equations and Henstock-Kurzweil integrals, Comment. Math. Prace Mat. 47 (2007), no. 2, 227–238. Zbl1178.45016MR2377959
  41. Sikorska-Nowak A., Existence theory for integrodifferential equations and Henstock-Kurzweil integral in Banach spaces, J. Appl. Math. 2007, article ID 31572, 12 pp. Zbl1148.26010MR2317885
  42. Sikorska-Nowak A., Nonlinear integral equations in Banach spaces and Henstock-Kurzweil-Pettis integrals, Dynam. Systems Appl. 17 (2008), 97–107. Zbl1154.45011MR2433893
  43. Szufla S., Kneser's theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), 407–413. Zbl0384.34039MR0492684
  44. Szufla S., Sets of fixed points of nonlinear mappings in functions spaces, Funkcial. Ekvac. 22 (1979), 121–126. MR0551256
  45. Szufla S., On the application of measure of noncompactness to existence theorems, Rend. Sem. Mat. Univ. Padova 75 (1986), 1–14. Zbl0589.45007MR0847653
  46. Szufla S., 10.1017/S0004972700003646, Bull. Austral. Math. Soc. 36 (1987), 353–360. Zbl0619.45003MR0923817DOI10.1017/S0004972700003646

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.