Displaying similar documents to “Retarded functional differential equations in Banach spaces and Henstock-Kurzweil-Pettis integrals”

The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem

Mieczysław Cichoń, Ireneusz Kubiaczyk, Sikorska-Nowak, Aneta Sikorska-Nowak, Aneta (2004)

Czechoslovak Mathematical Journal

Similarity:

In this paper we prove an existence theorem for the Cauchy problem x ' ( t ) = f ( t , x ( t ) ) , x ( 0 ) = x 0 , t I α = [ 0 , α ] using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function f are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function f satisfies some conditions expressed in terms of measures of weak noncompactness.

Differential equations in banach space and henstock-kurzweil integrals

Ireneusz Kubiaczyk, Aneta Sikorska (1999)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper, using the properties of the Henstock-Kurzweil integral and corresponding theorems, we prove the existence theorem for the equation x' = f(t,x) and inclusion x' ∈ F(t,x) in a Banach space, where f is Henstock-Kurzweil integrable and satisfies some conditions.

Characterizations of Kurzweil-Henstock-Pettis integrable functions

L. Di Piazza, K. Musiał (2006)

Studia Mathematica

Similarity:

We prove that several results of Talagrand proved for the Pettis integral also hold for the Kurzweil-Henstock-Pettis integral. In particular the Kurzweil-Henstock-Pettis integrability can be characterized by cores of the functions and by properties of suitable operators defined by integrands.

Volterra integral inclusions via Henstock-Kurzweil-Pettis integral

Bianca Satco (2006)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper, we prove the existence of continuous solutions of a Volterra integral inclusion involving the Henstock-Kurzweil-Pettis integral. Since this kind of integral is more general than the Bochner, Pettis and Henstock integrals, our result extends many of the results previously obtained in the single-valued setting or in the set-valued case.

Banach-valued Henstock-Kurzweil integrable functions are McShane integrable on a portion

Tuo-Yeong Lee (2005)

Mathematica Bohemica

Similarity:

It is shown that a Banach-valued Henstock-Kurzweil integrable function on an m -dimensional compact interval is McShane integrable on a portion of the interval. As a consequence, there exist a non-Perron integrable function f [ 0 , 1 ] 2 and a continuous function F [ 0 , 1 ] 2 such that ( ) 0 x ( ) 0 y f ( u , v ) d v d u = ( ) 0 y ( ) 0 x f ( u , v ) d u d v = F ( x , y ) for all ( x , y ) [ 0 , 1 ] 2 .