An optimal shape design problem for a hyperbolic hemivariational inequality
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2000)
- Volume: 20, Issue: 1, page 41-50
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topLeszek Gasiński. "An optimal shape design problem for a hyperbolic hemivariational inequality." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 20.1 (2000): 41-50. <http://eudml.org/doc/271495>.
@article{LeszekGasiński2000,
abstract = {In this paper we consider hemivariational inequalities of hyperbolic type. The existence result for hemivariational inequality is given and the existence theorem for the optimal shape design problem is shown.},
author = {Leszek Gasiński},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {optimal shape design; mapping method; hemivariational inequalities; Clarke subdifferential},
language = {eng},
number = {1},
pages = {41-50},
title = {An optimal shape design problem for a hyperbolic hemivariational inequality},
url = {http://eudml.org/doc/271495},
volume = {20},
year = {2000},
}
TY - JOUR
AU - Leszek Gasiński
TI - An optimal shape design problem for a hyperbolic hemivariational inequality
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2000
VL - 20
IS - 1
SP - 41
EP - 50
AB - In this paper we consider hemivariational inequalities of hyperbolic type. The existence result for hemivariational inequality is given and the existence theorem for the optimal shape design problem is shown.
LA - eng
KW - optimal shape design; mapping method; hemivariational inequalities; Clarke subdifferential
UR - http://eudml.org/doc/271495
ER -
References
top- [1] W. Bian, Existence Results for Second Order Nonlinear Evolution Inclusions, Indian J. Pure Appl. Math. 29 (11) (1998), 1177-1193. Zbl0922.34051
- [2] F.E. Browder and P. Hess, Nonlinear Mappings of Monotone Type in Banach Spaces, J. of Funct. Anal. 11 (1972), 251-294. Zbl0249.47044
- [3] K.C. Chang, Variational methods for nondifferentiable functionals and applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129. Zbl0487.49027
- [4] F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York 1983. Zbl0582.49001
- [5] Z. Denkowski and S. Migórski, Optimal Shape Design Problems for a Class of Systems Described by Hemivariational Inequality, J. Global. Opt. 12 (1998), 37-59. Zbl0902.49023
- [6] L. Gasiński, Optimal Shape Design Problems for a Class of Systems Described by Parabolic Hemivariational Inequality, J. Global. Opt. 12 (1998), 299-317. Zbl0905.49009
- [7] L. Gasiński, Hyperbolic Hemivariational Inequalities, in preparation. Zbl1022.49014
- [8] W.B. Liu and J.E. Rubio, Optimal Shape Design for Systems Governed by Variational Inequalities, Part 1: Existence Theory for the Elliptic Case, Part 2: Existence Theory for Evolution Case, J. Optim. Th. Appl. 69 (1991), 351-371, 373-396. Zbl0725.49014
- [9] A.M. Micheletti, Metrica per famiglie di domini limitati e proprieta generiche degli autovalori, Annali della Scuola Normale Superiore di Pisa 28 (1972), 683-693. Zbl0255.35028
- [10] J.J. Moreau, Le Notions de Sur-potential et les Liaisons Unilatérales en Élastostatique, C.R. Acad. Sc. Paris 267A (1968), 954-957. Zbl0172.49802
- [11] J.J. Moreau, P.D. Panagiotopoulos and G. Strang, Topics in Nonsmooth Mechanics, Birkhäuser, Basel 1988. Zbl0646.00014
- [12] F. Murat and J. Simon, Sur le Controle par un Domaine Geometrique, Preprint no. 76015, University of Paris 6 (1976), 725-734.
- [13] Z. Naniewicz and P.D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Dekker, New York 1995. Zbl0968.49008
- [14] P.D. Panagiotopoulos, Nonconvex Superpotentials in the Sense of F.H. Clarke and Applications, Mech. Res. Comm. 8 (1981), 335-340. Zbl0497.73020
- [15] P.D. Panagiotopoulos, Nonconvex problems of semipermeable media and related topics, Z. Angew. Math. Mech. 65 (1985), 29-36. Zbl0574.73015
- [16] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions, Birkhäuser, Basel 1985. Zbl0579.73014
- [17] O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer-Verlag, New York 1984. Zbl0534.49001
- [18] J. Sokołowski and J.P. Zolesio, Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer Verlag 1992. Zbl0761.73003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.