The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type

Tie Zhu Zhang; Shu Hua Zhang

Applications of Mathematics (2015)

  • Volume: 60, Issue: 5, page 573-596
  • ISSN: 0862-7940

Abstract

top
We study the superconvergence of the finite volume method for a nonlinear elliptic problem using linear trial functions. Under the condition of -uniform meshes, we first establish a superclose weak estimate for the bilinear form of the finite volume method. Then, we prove that on the mesh point set , the gradient approximation possesses the superconvergence: , where denotes the average gradient on elements containing vertex . Furthermore, by using the interpolation post-processing technique, we also derive a global superconvergence estimate in the -norm and establish an asymptotically exact a posteriori error estimator for the error .

How to cite

top

Zhang, Tie Zhu, and Zhang, Shu Hua. "The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type." Applications of Mathematics 60.5 (2015): 573-596. <http://eudml.org/doc/271591>.

@article{Zhang2015,
abstract = {We study the superconvergence of the finite volume method for a nonlinear elliptic problem using linear trial functions. Under the condition of $C$-uniform meshes, we first establish a superclose weak estimate for the bilinear form of the finite volume method. Then, we prove that on the mesh point set $S$, the gradient approximation possesses the superconvergence: $\max \nolimits _\{P\in S\}|(\nabla u-\overline\{\nabla \}u_h)(P)|=O(h^2)\mathopen |\ln h|^\{\{3\}/\{2\}\}$, where $\overline\{\nabla \}$ denotes the average gradient on elements containing vertex $P$. Furthermore, by using the interpolation post-processing technique, we also derive a global superconvergence estimate in the $H^1$-norm and establish an asymptotically exact a posteriori error estimator for the error $\Vert u-u_h\Vert _1$.},
author = {Zhang, Tie Zhu, Zhang, Shu Hua},
journal = {Applications of Mathematics},
keywords = {finite volume method; nonlinear elliptic problem; local and global superconvergence in the $W^\{1,\infty \}$-norm; a posteriori error estimator; finite volume method; nonlinear elliptic problem; local and global superconvergence in the $W^\{1,\infty \}$-norm; a posteriori error estimator},
language = {eng},
number = {5},
pages = {573-596},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type},
url = {http://eudml.org/doc/271591},
volume = {60},
year = {2015},
}

TY - JOUR
AU - Zhang, Tie Zhu
AU - Zhang, Shu Hua
TI - The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 5
SP - 573
EP - 596
AB - We study the superconvergence of the finite volume method for a nonlinear elliptic problem using linear trial functions. Under the condition of $C$-uniform meshes, we first establish a superclose weak estimate for the bilinear form of the finite volume method. Then, we prove that on the mesh point set $S$, the gradient approximation possesses the superconvergence: $\max \nolimits _{P\in S}|(\nabla u-\overline{\nabla }u_h)(P)|=O(h^2)\mathopen |\ln h|^{{3}/{2}}$, where $\overline{\nabla }$ denotes the average gradient on elements containing vertex $P$. Furthermore, by using the interpolation post-processing technique, we also derive a global superconvergence estimate in the $H^1$-norm and establish an asymptotically exact a posteriori error estimator for the error $\Vert u-u_h\Vert _1$.
LA - eng
KW - finite volume method; nonlinear elliptic problem; local and global superconvergence in the $W^{1,\infty }$-norm; a posteriori error estimator; finite volume method; nonlinear elliptic problem; local and global superconvergence in the $W^{1,\infty }$-norm; a posteriori error estimator
UR - http://eudml.org/doc/271591
ER -

References

top
  1. Babuška, I., Banerjee, U., Osborn, J. E., 10.1007/s00211-007-0096-8, Numer. Math. 107 (2007), 353-395. (2007) Zbl1129.65075MR2336112DOI10.1007/s00211-007-0096-8
  2. Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K., 10.1002/num.1690120303, Numer. Methods Partial Differ. Equations 12 (1996), 347-392. (1996) Zbl0854.65089MR1388445DOI10.1002/num.1690120303
  3. Babuška, I., Whiteman, J. R., Strouboulis, T., Finite Elements. An Introduction to the Method and Error Estimation, Oxford University Press, Oxford (2011). (2011) Zbl1206.65246MR2857237
  4. Bank, R. E., Rose, D. J., 10.1137/0724050, SIAM J. Numer. Anal. 24 (1987), 777-787. (1987) Zbl0634.65105MR0899703DOI10.1137/0724050
  5. Bergam, A., Mghazli, Z., Verfürth, R., A posteriori estimates of a finite volume scheme for a nonlinear problem, Numer. Math. French 95 (2003), 599-624. (2003) Zbl1033.65095MR2013121
  6. Bi, C., 10.1002/num.20173, Numer. Methods Partial Differ. Equations 23 (2007), 220-233. (2007) Zbl1119.65105MR2275467DOI10.1002/num.20173
  7. Bi, C., Ginting, V., 10.1007/s00211-007-0115-9, Numer. Math. 108 (2007), 177-198. (2007) Zbl1134.65077MR2358002DOI10.1007/s00211-007-0115-9
  8. Brandts, J. H., 10.1007/s10492-009-0014-8, Appl. Math., Praha 54 (2009), 225-235. (2009) Zbl1212.65441MR2530540DOI10.1007/s10492-009-0014-8
  9. Brandts, J., Křížek, M., 10.1093/imanum/23.3.489, IMA J. Numer. Anal. 23 (2003), 489-505. (2003) Zbl1042.65081MR1987941DOI10.1093/imanum/23.3.489
  10. Brandts, J., Křížek, M., Superconvergence of tetrahedral quadratic finite elements, J. Comput. Math. 23 (2005), 27-36. (2005) Zbl1072.65137MR2124141
  11. Cai, Z., 10.1007/BF01385651, Numer. Math. 58 (1991), 713-735. (1991) Zbl0731.65093MR1090257DOI10.1007/BF01385651
  12. Chatzipantelidis, P., Ginting, V., Lazarov, R. D., 10.1002/nla.439, Numer. Linear Algebra Appl. 12 (2005), 515-546. (2005) MR2150166DOI10.1002/nla.439
  13. Chen, Z., Superconvergence of generalized difference method for elliptic boundary value problem, Numer. Math., J. Chin. Univ. 3 (1994), 163-171. (1994) Zbl0814.65102MR1325662
  14. Chen, L., 10.1137/080720164, SIAM J. Numer. Anal. 47 (2010), 4021-4043. (2010) Zbl1261.65109MR2585177DOI10.1137/080720164
  15. Chen, Z., Li, R., Zhou, A., 10.1023/A:1014577215948, Adv. Comput. Math. 16 (2002), 291-303. (2002) Zbl0997.65122MR1894926DOI10.1023/A:1014577215948
  16. Chou, S.-H., Kwak, D. Y., Li, Q., 10.1002/num.10059, Numer. Methods Partial Differ. Equations 19 (2003), 463-486. (2003) Zbl1029.65123MR1980190DOI10.1002/num.10059
  17. J. Douglas, Jr., T. Dupont, 10.1090/S0025-5718-1975-0431747-2, Math. Comp. 29 (1975), 689-696. (1975) Zbl0306.65072MR0431747DOI10.1090/S0025-5718-1975-0431747-2
  18. J. Douglas, Jr., T. Dupont, J. Serrin, 10.1007/BF00250482, Arch Ration. Mech. Anal. 42 (1971), 157-168. (1971) Zbl0222.35017MR0393829DOI10.1007/BF00250482
  19. Ewing, R. E., Lin, T., Lin, Y., 10.1137/S0036142900368873, SIAM J. Numer. Anal. 39 (2002), 1865-1888. (2002) Zbl1036.65084MR1897941DOI10.1137/S0036142900368873
  20. Hlaváček, I., Křížek, M., On a nonpotential nonmonotone second order elliptic problem with mixed boundary conditions, Stab. Appl. Anal. Contin. Media 3 (1993), 85-97. (1993) 
  21. Hlaváček, I., Křížek, M., Malý, J., 10.1006/jmaa.1994.1192, J. Math. Anal. Appl. 184 (1994), 168-189. (1994) MR1275952DOI10.1006/jmaa.1994.1192
  22. Huang, J., Li, L., 10.1002/cnm.403, Commun. Numer. Methods Eng. 17 (2001), 291-302. (2001) Zbl0987.65109MR1832578DOI10.1002/cnm.403
  23. Křížek, M., Neittaanmäki, P., Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications, Mathematical Modelling: Theory and Applications 1 Kluwer Academic Publishers, Dordrecht (1996). (1996) MR1431889
  24. Lazarov, R. D., Mishev, I. D., Vassilevski, P. S., 10.1137/0733003, SIAM J. Numer. Anal. 33 (1996), 31-55. (1996) Zbl0847.65075MR1377242DOI10.1137/0733003
  25. Li, R., 10.1137/0724007, SIAM J. Numer. Anal. 24 (1987), 77-88. (1987) Zbl0626.65091MR0874736DOI10.1137/0724007
  26. Li, R., Chen, Z., Wu, W., Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods, Pure and Applied Mathematics Marcel Dekker, New York (2000). (2000) Zbl0940.65125MR1731376
  27. Lin, Q., Zhu, Q. D., The Preprocessing and Postprocessing for the Finite Element Methods, Chinese Shanghai Sci. & Tech. Publishing Shanghai (1994). (1994) 
  28. Lv, J., Li, Y., 10.1007/s10444-011-9215-2, Adv. Comput. Math. 37 (2012), 393-416. (2012) Zbl1255.65198MR2970858DOI10.1007/s10444-011-9215-2
  29. Schmidt, T., 10.1007/BF02238536, Computing 51 (1993), 271-292. (1993) Zbl0787.65075MR1253406DOI10.1007/BF02238536
  30. Süli, E., 10.1137/0728073, SIAM J. Numer. Anal. 28 (1991), 1419-1430. (1991) Zbl0802.65104MR1119276DOI10.1137/0728073
  31. Wahlbin, L. B., 10.1007/BFb0096835, Lecture Notes in Mathematics 1605 Springer, Belin (1995). (1995) Zbl0826.65092MR1439050DOI10.1007/BFb0096835
  32. Wu, H., Li, R., 10.1002/num.10068, Numer. Methods Partial Differ. Equations 19 (2003), 693-708. (2003) Zbl1040.65091MR2009589DOI10.1002/num.10068
  33. Zhang, T., Finite Element Methods for Partial Differential-Integral Equations, Chinese Science Press, Beijing (2012). (2012) 
  34. Zhang, T., Lin, Y. P., Tait, R. J., On the finite volume element version of Ritz-Volterra projection and applications to related equations, J. Comput. Math. 20 (2002), 491-504. (2002) Zbl1013.65143MR1931591
  35. Zhu, Q. D., Lin, Q., The Superconvergence Theory of Finite Elements, Chinese Hunan Science and Technology Publishing House Changsha (1989). (1989) MR1200243

NotesEmbed ?

top

You must be logged in to post comments.