The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type
Applications of Mathematics (2015)
- Volume: 60, Issue: 5, page 573-596
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topZhang, Tie Zhu, and Zhang, Shu Hua. "The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type." Applications of Mathematics 60.5 (2015): 573-596. <http://eudml.org/doc/271591>.
@article{Zhang2015,
abstract = {We study the superconvergence of the finite volume method for a nonlinear elliptic problem using linear trial functions. Under the condition of $C$-uniform meshes, we first establish a superclose weak estimate for the bilinear form of the finite volume method. Then, we prove that on the mesh point set $S$, the gradient approximation possesses the superconvergence: $\max \nolimits _\{P\in S\}|(\nabla u-\overline\{\nabla \}u_h)(P)|=O(h^2)\mathopen |\ln h|^\{\{3\}/\{2\}\}$, where $\overline\{\nabla \}$ denotes the average gradient on elements containing vertex $P$. Furthermore, by using the interpolation post-processing technique, we also derive a global superconvergence estimate in the $H^1$-norm and establish an asymptotically exact a posteriori error estimator for the error $\Vert u-u_h\Vert _1$.},
author = {Zhang, Tie Zhu, Zhang, Shu Hua},
journal = {Applications of Mathematics},
keywords = {finite volume method; nonlinear elliptic problem; local and global superconvergence in the $W^\{1,\infty \}$-norm; a posteriori error estimator; finite volume method; nonlinear elliptic problem; local and global superconvergence in the $W^\{1,\infty \}$-norm; a posteriori error estimator},
language = {eng},
number = {5},
pages = {573-596},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type},
url = {http://eudml.org/doc/271591},
volume = {60},
year = {2015},
}
TY - JOUR
AU - Zhang, Tie Zhu
AU - Zhang, Shu Hua
TI - The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 5
SP - 573
EP - 596
AB - We study the superconvergence of the finite volume method for a nonlinear elliptic problem using linear trial functions. Under the condition of $C$-uniform meshes, we first establish a superclose weak estimate for the bilinear form of the finite volume method. Then, we prove that on the mesh point set $S$, the gradient approximation possesses the superconvergence: $\max \nolimits _{P\in S}|(\nabla u-\overline{\nabla }u_h)(P)|=O(h^2)\mathopen |\ln h|^{{3}/{2}}$, where $\overline{\nabla }$ denotes the average gradient on elements containing vertex $P$. Furthermore, by using the interpolation post-processing technique, we also derive a global superconvergence estimate in the $H^1$-norm and establish an asymptotically exact a posteriori error estimator for the error $\Vert u-u_h\Vert _1$.
LA - eng
KW - finite volume method; nonlinear elliptic problem; local and global superconvergence in the $W^{1,\infty }$-norm; a posteriori error estimator; finite volume method; nonlinear elliptic problem; local and global superconvergence in the $W^{1,\infty }$-norm; a posteriori error estimator
UR - http://eudml.org/doc/271591
ER -
References
top- Babuška, I., Banerjee, U., Osborn, J. E., 10.1007/s00211-007-0096-8, Numer. Math. 107 (2007), 353-395. (2007) Zbl1129.65075MR2336112DOI10.1007/s00211-007-0096-8
- Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K., 10.1002/num.1690120303, Numer. Methods Partial Differ. Equations 12 (1996), 347-392. (1996) Zbl0854.65089MR1388445DOI10.1002/num.1690120303
- Babuška, I., Whiteman, J. R., Strouboulis, T., Finite Elements. An Introduction to the Method and Error Estimation, Oxford University Press, Oxford (2011). (2011) Zbl1206.65246MR2857237
- Bank, R. E., Rose, D. J., 10.1137/0724050, SIAM J. Numer. Anal. 24 (1987), 777-787. (1987) Zbl0634.65105MR0899703DOI10.1137/0724050
- Bergam, A., Mghazli, Z., Verfürth, R., A posteriori estimates of a finite volume scheme for a nonlinear problem, Numer. Math. French 95 (2003), 599-624. (2003) Zbl1033.65095MR2013121
- Bi, C., 10.1002/num.20173, Numer. Methods Partial Differ. Equations 23 (2007), 220-233. (2007) Zbl1119.65105MR2275467DOI10.1002/num.20173
- Bi, C., Ginting, V., 10.1007/s00211-007-0115-9, Numer. Math. 108 (2007), 177-198. (2007) Zbl1134.65077MR2358002DOI10.1007/s00211-007-0115-9
- Brandts, J. H., 10.1007/s10492-009-0014-8, Appl. Math., Praha 54 (2009), 225-235. (2009) Zbl1212.65441MR2530540DOI10.1007/s10492-009-0014-8
- Brandts, J., Křížek, M., 10.1093/imanum/23.3.489, IMA J. Numer. Anal. 23 (2003), 489-505. (2003) Zbl1042.65081MR1987941DOI10.1093/imanum/23.3.489
- Brandts, J., Křížek, M., Superconvergence of tetrahedral quadratic finite elements, J. Comput. Math. 23 (2005), 27-36. (2005) Zbl1072.65137MR2124141
- Cai, Z., 10.1007/BF01385651, Numer. Math. 58 (1991), 713-735. (1991) Zbl0731.65093MR1090257DOI10.1007/BF01385651
- Chatzipantelidis, P., Ginting, V., Lazarov, R. D., 10.1002/nla.439, Numer. Linear Algebra Appl. 12 (2005), 515-546. (2005) MR2150166DOI10.1002/nla.439
- Chen, Z., Superconvergence of generalized difference method for elliptic boundary value problem, Numer. Math., J. Chin. Univ. 3 (1994), 163-171. (1994) Zbl0814.65102MR1325662
- Chen, L., 10.1137/080720164, SIAM J. Numer. Anal. 47 (2010), 4021-4043. (2010) Zbl1261.65109MR2585177DOI10.1137/080720164
- Chen, Z., Li, R., Zhou, A., 10.1023/A:1014577215948, Adv. Comput. Math. 16 (2002), 291-303. (2002) Zbl0997.65122MR1894926DOI10.1023/A:1014577215948
- Chou, S.-H., Kwak, D. Y., Li, Q., 10.1002/num.10059, Numer. Methods Partial Differ. Equations 19 (2003), 463-486. (2003) Zbl1029.65123MR1980190DOI10.1002/num.10059
- J. Douglas, Jr., T. Dupont, 10.1090/S0025-5718-1975-0431747-2, Math. Comp. 29 (1975), 689-696. (1975) Zbl0306.65072MR0431747DOI10.1090/S0025-5718-1975-0431747-2
- J. Douglas, Jr., T. Dupont, J. Serrin, 10.1007/BF00250482, Arch Ration. Mech. Anal. 42 (1971), 157-168. (1971) Zbl0222.35017MR0393829DOI10.1007/BF00250482
- Ewing, R. E., Lin, T., Lin, Y., 10.1137/S0036142900368873, SIAM J. Numer. Anal. 39 (2002), 1865-1888. (2002) Zbl1036.65084MR1897941DOI10.1137/S0036142900368873
- Hlaváček, I., Křížek, M., On a nonpotential nonmonotone second order elliptic problem with mixed boundary conditions, Stab. Appl. Anal. Contin. Media 3 (1993), 85-97. (1993)
- Hlaváček, I., Křížek, M., Malý, J., 10.1006/jmaa.1994.1192, J. Math. Anal. Appl. 184 (1994), 168-189. (1994) MR1275952DOI10.1006/jmaa.1994.1192
- Huang, J., Li, L., 10.1002/cnm.403, Commun. Numer. Methods Eng. 17 (2001), 291-302. (2001) Zbl0987.65109MR1832578DOI10.1002/cnm.403
- Křížek, M., Neittaanmäki, P., Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications, Mathematical Modelling: Theory and Applications 1 Kluwer Academic Publishers, Dordrecht (1996). (1996) MR1431889
- Lazarov, R. D., Mishev, I. D., Vassilevski, P. S., 10.1137/0733003, SIAM J. Numer. Anal. 33 (1996), 31-55. (1996) Zbl0847.65075MR1377242DOI10.1137/0733003
- Li, R., 10.1137/0724007, SIAM J. Numer. Anal. 24 (1987), 77-88. (1987) Zbl0626.65091MR0874736DOI10.1137/0724007
- Li, R., Chen, Z., Wu, W., Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods, Pure and Applied Mathematics Marcel Dekker, New York (2000). (2000) Zbl0940.65125MR1731376
- Lin, Q., Zhu, Q. D., The Preprocessing and Postprocessing for the Finite Element Methods, Chinese Shanghai Sci. & Tech. Publishing Shanghai (1994). (1994)
- Lv, J., Li, Y., 10.1007/s10444-011-9215-2, Adv. Comput. Math. 37 (2012), 393-416. (2012) Zbl1255.65198MR2970858DOI10.1007/s10444-011-9215-2
- Schmidt, T., 10.1007/BF02238536, Computing 51 (1993), 271-292. (1993) Zbl0787.65075MR1253406DOI10.1007/BF02238536
- Süli, E., 10.1137/0728073, SIAM J. Numer. Anal. 28 (1991), 1419-1430. (1991) Zbl0802.65104MR1119276DOI10.1137/0728073
- Wahlbin, L. B., 10.1007/BFb0096835, Lecture Notes in Mathematics 1605 Springer, Belin (1995). (1995) Zbl0826.65092MR1439050DOI10.1007/BFb0096835
- Wu, H., Li, R., 10.1002/num.10068, Numer. Methods Partial Differ. Equations 19 (2003), 693-708. (2003) Zbl1040.65091MR2009589DOI10.1002/num.10068
- Zhang, T., Finite Element Methods for Partial Differential-Integral Equations, Chinese Science Press, Beijing (2012). (2012)
- Zhang, T., Lin, Y. P., Tait, R. J., On the finite volume element version of Ritz-Volterra projection and applications to related equations, J. Comput. Math. 20 (2002), 491-504. (2002) Zbl1013.65143MR1931591
- Zhu, Q. D., Lin, Q., The Superconvergence Theory of Finite Elements, Chinese Hunan Science and Technology Publishing House Changsha (1989). (1989) MR1200243
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.