Displaying similar documents to “The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type”

Uniform L 1 error bounds for semi-discrete finite element solutions of evolutionary integral equations

Lin, Qun, Xu, Da, Zhang, Shuhua

Similarity:

In this paper, we consider the second-order continuous time Galerkin approximation of the solution to the initial problem u t + 0 t β ( t - s ) A u ( s ) d s = 0 , u ( 0 ) = v , t > 0 , where A is an elliptic partial-differential operator and β ( t ) is positive, nonincreasing and log-convex on ( 0 , ) with 0 β ( ) < β ( 0 + ) . Error estimates are derived in the norm of L t 1 ( 0 , ; L x 2 ) , and some estimates for the first order time derivatives of the errors are also given.

Partially elliptic differential equations having distributions as their right members

H. Marcinkowska

Similarity:

ContentsIntroduction.............................................................................................................................31. Definitions, notations and some auxiliary lemmas...................................................42. The definition of the spaces H p , q ; Y ( Ω , ) ..........................................................73. Some properties of the spaces H p , q ; Y ( Ω , ) ...................................................104. Some examples of the spaces H p , q ; Y ( Ω , ) ....................................................155....

On annealed elliptic Green's function estimates

Daniel Marahrens, Felix Otto (2015)

Mathematica Bohemica

Similarity:

We consider a random, uniformly elliptic coefficient field a on the lattice d . The distribution · of the coefficient field is assumed to be stationary. Delmotte and Deuschel showed that the gradient and second mixed derivative of the parabolic Green’s function G ( t , x , y ) satisfy optimal annealed estimates which are L 2 and L 1 , respectively, in probability, i.e., they obtained bounds on | x G ( t , x , y ) | 2 1 / 2 and | x y G ( t , x , y ) | . In particular, the elliptic Green’s function G ( x , y ) satisfies optimal annealed bounds. In their recent work,...

Perturbed nonlinear degenerate problems in N

A. El Khalil, S. El Manouni, M. Ouanan (2009)

Applicationes Mathematicae

Similarity:

Via critical point theory we establish the existence and regularity of solutions for the quasilinear elliptic problem ⎧ d i v ( x , u ) + a ( x ) | u | p - 2 u = g ( x ) | u | p - 2 u + h ( x ) | u | s - 1 u in N ⎨ ⎩ u > 0, l i m | x | u ( x ) = 0 , where 1 < p < N; a(x) is assumed to satisfy a coercivity condition; h(x) and g(x) are not necessarily bounded but satisfy some integrability restrictions.

Entire solutions to a class of fully nonlinear elliptic equations

Ovidiu Savin (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We study nonlinear elliptic equations of the form F ( D 2 u ) = f ( u ) where the main assumption on F and f is that there exists a one dimensional solution which solves the equation in all the directions ξ n . We show that entire monotone solutions u are one dimensional if their 0 level set is assumed to be Lipschitz, flat or bounded from one side by a hyperplane.

T-p(x)-solutions for nonlinear elliptic equations with an L¹-dual datum

El Houssine Azroul, Abdelkrim Barbara, Meryem El Lekhlifi, Mohamed Rhoudaf (2012)

Applicationes Mathematicae

Similarity:

We establish the existence of a T-p(x)-solution for the p(x)-elliptic problem - d i v ( a ( x , u , u ) ) + g ( x , u ) = f - d i v F in Ω, where Ω is a bounded open domain of N , N ≥ 2 and a : Ω × × N N is a Carathéodory function satisfying the natural growth condition and the coercivity condition, but with only a weak monotonicity condition. The right hand side f lies in L¹(Ω) and F belongs to i = 1 N L p ' ( · ) ( Ω ) .

Existence and nonexistence of solutions for a quasilinear elliptic system

Qin Li, Zuodong Yang (2015)

Annales Polonici Mathematici

Similarity:

By a sub-super solution argument, we study the existence of positive solutions for the system ⎧ - Δ p u = a ( x ) F ( x , u , v ) in Ω, ⎪ - Δ q v = a ( x ) F ( x , u , v ) in Ω, ⎨u,v > 0 in Ω, ⎩u = v = 0 on ∂Ω, where Ω is a bounded domain in N with smooth boundary or Ω = N . A nonexistence result is obtained for radially symmetric solutions.

On some L p -estimates for solutions of elliptic equations in unbounded domains

Sara Monsurrò, Maria Transirico (2015)

Mathematica Bohemica

Similarity:

In this review article we present an overview on some a priori estimates in L p , p > 1 , recently obtained in the framework of the study of a certain kind of Dirichlet problem in unbounded domains. More precisely, we consider a linear uniformly elliptic second order differential operator in divergence form with bounded leading coeffcients and with lower order terms coefficients belonging to certain Morrey type spaces. Under suitable assumptions on the data, we first show two L p -bounds, p > 2 , for...

Optimal estimators in learning theory

V. N. Temlyakov (2006)

Banach Center Publications

Similarity:

This paper is a survey of recent results on some problems of supervised learning in the setting formulated by Cucker and Smale. Supervised learning, or learning-from-examples, refers to a process that builds on the base of available data of inputs x i and outputs y i , i = 1,...,m, a function that best represents the relation between the inputs x ∈ X and the corresponding outputs y ∈ Y. The goal is to find an estimator f z on the base of given data z : = ( ( x , y ) , . . . , ( x m , y m ) ) that approximates well the regression function...

Multiplicity results for a class of concave-convex elliptic systems involving sign-changing weight functions

Honghui Yin, Zuodong Yang (2011)

Annales Polonici Mathematici

Similarity:

Our main purpose is to establish the existence of weak solutions of second order quasilinear elliptic systems ⎧ - Δ p u + | u | p - 2 u = f 1 λ ( x ) | u | q - 2 u + 2 α / ( α + β ) g μ | u | α - 2 u | v | β , x ∈ Ω, ⎨ - Δ p v + | v | p - 2 v = f 2 λ ( x ) | v | q - 2 v + 2 β / ( α + β ) g μ | u | α | v | β - 2 v , x ∈ Ω, ⎩ u = v = 0, x∈ ∂Ω, where 1 < q < p < N and Ω N is an open bounded smooth domain. Here λ₁, λ₂, μ ≥ 0 and f i λ i ( x ) = λ i f i + ( x ) + f i - ( x ) (i = 1,2) are sign-changing functions, where f i ± ( x ) = m a x ± f i ( x ) , 0 , g μ ( x ) = a ( x ) + μ b ( x ) , and Δ p u = d i v ( | u | p - 2 u ) denotes the p-Laplace operator. We use variational methods.

On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values

Nguyen Vu Dzung, Le Thi Phuong Ngoc, Nguyen Huu Nhan, Nguyen Thanh Long (2024)

Mathematica Bohemica

Similarity:

We consider problem (P) of Kirchhoff-Carrier type with nonlinear terms containing a finite number of unknown values u ( η 1 , t ) , , u ( η q , t ) with 0 η 1 < η 2 < < η q < 1 . By applying the linearization method together with the Faedo-Galerkin method and the weak compact method, we first prove the existence and uniqueness of a local weak solution of problem (P). Next, we consider a specific case ( P q ) of (P) in which the nonlinear term contains the sum S q [ u 2 ] ( t ) = q - 1 i = 1 q u 2 ( ( i - 1 ) q , t ) . Under suitable conditions, we prove that the solution of ( P q ) converges to the solution...