Estimates of the principal eigenvalue of the -Laplacian and the -biharmonic operator
Mathematica Bohemica (2015)
- Volume: 140, Issue: 2, page 215-222
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBenedikt, Jiří. "Estimates of the principal eigenvalue of the $p$-Laplacian and the $p$-biharmonic operator." Mathematica Bohemica 140.2 (2015): 215-222. <http://eudml.org/doc/271616>.
@article{Benedikt2015,
abstract = {We survey recent results concerning estimates of the principal eigenvalue of the Dirichlet $p$-Laplacian and the Navier $p$-biharmonic operator on a ball of radius $R$ in $\mathbb \{R\}^N$ and its asymptotics for $p$ approaching $1$ and $\infty $. Let $p$ tend to $\infty $. There is a critical radius $R_C$ of the ball such that the principal eigenvalue goes to $\infty $ for $0<R\le R_C$ and to $0$ for $R>R_C$. The critical radius is $R_C=1$ for any $N\in \mathbb \{N\}$ for the $p$-Laplacian and $R_C=\sqrt\{2N\}$ in the case of the $p$-biharmonic operator. When $p$ approaches $1$, the principal eigenvalue of the Dirichlet $p$-Laplacian is $NR^\{-1\}\*(1-(p-1)\log R(p-1))+o(p-1)$ while the asymptotics for the principal eigenvalue of the Navier $p$-biharmonic operator reads $2N/R^2+O(-(p-1)\log (p-1))$.},
author = {Benedikt, Jiří},
journal = {Mathematica Bohemica},
keywords = {eigenvalue problem for $p$-Laplacian; eigenvalue problem for $p$-biharmonic operator; estimates of principal eigenvalue; asymptotic analysis},
language = {eng},
number = {2},
pages = {215-222},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Estimates of the principal eigenvalue of the $p$-Laplacian and the $p$-biharmonic operator},
url = {http://eudml.org/doc/271616},
volume = {140},
year = {2015},
}
TY - JOUR
AU - Benedikt, Jiří
TI - Estimates of the principal eigenvalue of the $p$-Laplacian and the $p$-biharmonic operator
JO - Mathematica Bohemica
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 140
IS - 2
SP - 215
EP - 222
AB - We survey recent results concerning estimates of the principal eigenvalue of the Dirichlet $p$-Laplacian and the Navier $p$-biharmonic operator on a ball of radius $R$ in $\mathbb {R}^N$ and its asymptotics for $p$ approaching $1$ and $\infty $. Let $p$ tend to $\infty $. There is a critical radius $R_C$ of the ball such that the principal eigenvalue goes to $\infty $ for $0<R\le R_C$ and to $0$ for $R>R_C$. The critical radius is $R_C=1$ for any $N\in \mathbb {N}$ for the $p$-Laplacian and $R_C=\sqrt{2N}$ in the case of the $p$-biharmonic operator. When $p$ approaches $1$, the principal eigenvalue of the Dirichlet $p$-Laplacian is $NR^{-1}\*(1-(p-1)\log R(p-1))+o(p-1)$ while the asymptotics for the principal eigenvalue of the Navier $p$-biharmonic operator reads $2N/R^2+O(-(p-1)\log (p-1))$.
LA - eng
KW - eigenvalue problem for $p$-Laplacian; eigenvalue problem for $p$-biharmonic operator; estimates of principal eigenvalue; asymptotic analysis
UR - http://eudml.org/doc/271616
ER -
References
top- Allegretto, W., Huang, Y. X., A Picone’s identity for the -Laplacian and applications, Nonlinear Anal., Theory Methods Appl. 32 819-830 (1998). (1998) Zbl0930.35053MR1618334
- Benedikt, J., Drábek, P., 10.1016/j.na.2013.10.016, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 95 735-742 (2014). (2014) Zbl1281.35061MR3130558DOI10.1016/j.na.2013.10.016
- Benedikt, J., Drábek, P., 10.1016/j.na.2013.07.026, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 93 23-29 (2013). (2013) Zbl1281.35064MR3117145DOI10.1016/j.na.2013.07.026
- Benedikt, J., Drábek, P., 10.1016/j.na.2012.04.055, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 5374-5379 (2012). (2012) Zbl1244.35096MR2927595DOI10.1016/j.na.2012.04.055
- Benedikt, J., Drábek, P., 10.1016/j.jmaa.2012.03.054, J. Math. Anal. Appl. 393 311-315 (2012). (2012) Zbl1245.35075MR2921671DOI10.1016/j.jmaa.2012.03.054
- Biezuner, R. J., Brown, J., Ercole, G., Martins, E. M., 10.1007/s10915-011-9540-0, J. Sci. Comput. 52 180-201 (2012). (2012) Zbl1255.65205MR2923523DOI10.1007/s10915-011-9540-0
- Biezuner, R. J., Ercole, G., Martins, E. M., 10.1016/j.jfa.2009.01.023, J. Funct. Anal. 257 243-270 (2009). (2009) Zbl1172.35047MR2523341DOI10.1016/j.jfa.2009.01.023
- Bueno, H., Ercole, G., Zumpano, A., 10.1515/ans-2009-0206, Adv. Nonlinear Stud. 9 313-338 (2009). (2009) Zbl1181.35115MR2503832DOI10.1515/ans-2009-0206
- Drábek, P., Milota, J., Methods of Nonlinear Analysis. Applications to Differential Equations, Birkhäuser Advanced Texts: Basel Lehrbücher Birkhäuser, Basel (2007). (2007) Zbl1176.35002MR2323436
- Drábek, P., Ôtani, M., Global bifurcation result for the -biharmonic operator, Electron. J. Differ. Equ. (electronic only) 2001 48 19 pages (2001). (2001) Zbl0983.35099MR1846664
- Jaroš, J., Picone’s identity for the -biharmonic operator with applications, Electron. J. Differ. Equ. (electronic only) 2011 122 6 pages (2011). (2011) Zbl1229.35024MR2836803
- Juutinen, P., Lindqvist, P., Manfredi, J. J., 10.1007/s002050050157, Arch. Ration. Mech. Anal. 148 89-105 (1999). (1999) Zbl0947.35104MR1716563DOI10.1007/s002050050157
- Kawohl, B., 10.1007/BFb0075060, Lecture Notes in Mathematics 1150 Springer, Berlin (1985). (1985) Zbl0593.35002MR0810619DOI10.1007/BFb0075060
- Kawohl, B., Fridman, V., Isoperimetric estimates for the first eigenvalue of the -Laplace operator and the Cheeger constant, Commentat. Math. Univ. Carol. 44 659-667 (2003). (2003) Zbl1105.35029MR2062882
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.