On the existence of parabolic actions in convex domains of
François Berteloot; Ninh Van Thu
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 3, page 579-585
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBerteloot, François, and Thu, Ninh Van. "On the existence of parabolic actions in convex domains of $\mathbb {C}^{k+1}$." Czechoslovak Mathematical Journal 65.3 (2015): 579-585. <http://eudml.org/doc/271806>.
@article{Berteloot2015,
abstract = {We prove that the one-parameter group of holomorphic automorphisms induced on a strictly geometrically bounded domain by a biholomorphism with a model domain is parabolic. This result is related to the Greene-Krantz conjecture and more generally to the classification of domains having a non compact automorphisms group. The proof relies on elementary estimates on the Kobayashi pseudo-metric.},
author = {Berteloot, François, Thu, Ninh Van},
journal = {Czechoslovak Mathematical Journal},
keywords = {parabolic boundary point; convex domain; automorphism group},
language = {eng},
number = {3},
pages = {579-585},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the existence of parabolic actions in convex domains of $\mathbb \{C\}^\{k+1\}$},
url = {http://eudml.org/doc/271806},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Berteloot, François
AU - Thu, Ninh Van
TI - On the existence of parabolic actions in convex domains of $\mathbb {C}^{k+1}$
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 3
SP - 579
EP - 585
AB - We prove that the one-parameter group of holomorphic automorphisms induced on a strictly geometrically bounded domain by a biholomorphism with a model domain is parabolic. This result is related to the Greene-Krantz conjecture and more generally to the classification of domains having a non compact automorphisms group. The proof relies on elementary estimates on the Kobayashi pseudo-metric.
LA - eng
KW - parabolic boundary point; convex domain; automorphism group
UR - http://eudml.org/doc/271806
ER -
References
top- Bedford, E., Pinchuk, S., 10.1512/iumj.1998.47.1552, Indiana Univ. Math. J. 47 (1998), 199-222. (1998) MR1631557DOI10.1512/iumj.1998.47.1552
- Bedford, E., Pinchuk, S., 10.1007/BF02921302, J. Geom. Anal. 1 (1991), 165-191. (1991) MR1120679DOI10.1007/BF02921302
- Bedford, E., Pinchuk, S. I., 10.1070/SM1989v063n01ABEH003264, Math. USSR, Sb. 63 (1989), 141-151 translation from Mat. Sb., Nov. Ser. 135(177) (1988), 147-157, 271 Russian. (1988) MR0937803DOI10.1070/SM1989v063n01ABEH003264
- Berteloot, F., 10.1007/BF02930994, J. Geom. Anal. 13 French (2003), 29-37. (2003) MR1967034DOI10.1007/BF02930994
- Berteloot, F., 10.1142/S0129167X94000322, Int. J. Math. 5 (1994), 619-634. (1994) MR1297410DOI10.1142/S0129167X94000322
- Berteloot, F., Cœuré, G., 10.5802/aif.1249, Ann. Inst. Fourier 41 French (1991), 77-86. (1991) MR1112192DOI10.5802/aif.1249
- Byun, J., Gaussier, H., 10.1016/j.crma.2005.09.018, C. R., Math., Acad. Sci. Paris 341 (2005), 545-548. (2005) Zbl1086.32020MR2181391DOI10.1016/j.crma.2005.09.018
- Greene, R. E., Krantz, S. G., Techniques for studying automorphisms of weakly pseudoconvex domains, Several Complex Variables: Proceedings of the Mittag-Leffler Institute, Stockholm, Sweden, 1987/1988 Math. Notes 38 Princeton University Press, Princeton (1993), 389-410 J. E. Fornæss. (1993) Zbl0779.32017MR1207869
- Isaev, A. V., Krantz, S. G., 10.1006/aima.1998.1821, Adv. Math. 146 (1999), 1-38. (1999) Zbl1040.32019MR1706680DOI10.1006/aima.1998.1821
- Kang, H., 10.2748/tmj/1178225723, Tohoku Math. J. (2) 46 (1994), 435-442. (1994) Zbl0817.32011MR1289190DOI10.2748/tmj/1178225723
- Kim, K.-T., 10.1006/jmaa.1993.1362, J. Math. Anal. Appl. 179 (1993), 463-482. (1993) MR1249831DOI10.1006/jmaa.1993.1362
- Kim, K.-T., Krantz, S. G., 10.1016/S0022-247X(03)00003-9, J. Math. Anal. Appl. 281 (2003), 417-424. (2003) Zbl1035.32019MR1982663DOI10.1016/S0022-247X(03)00003-9
- Kim, K.-T., Krantz, S. G., 10.1215/ijm/1258138066, Ill. J. Math. 45 (2001), 1273-1299. (2001) Zbl1065.32014MR1895457DOI10.1215/ijm/1258138066
- Landucci, M., 10.1215/ijm/1258131057, Ill. J. Math. 48 (2004), 875-885. (2004) Zbl1065.32016MR2114256DOI10.1215/ijm/1258131057
- Rosay, J.-P., 10.5802/aif.768, Ann. Inst. Fourier 29 French (1979), 91-97. (1979) MR0558590DOI10.5802/aif.768
- Wong, B., 10.1007/BF01403050, Invent. Math. 41 (1977), 253-257. (1977) MR0492401DOI10.1007/BF01403050
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.