On the existence of parabolic actions in convex domains of k + 1

François Berteloot; Ninh Van Thu

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 3, page 579-585
  • ISSN: 0011-4642

Abstract

top
We prove that the one-parameter group of holomorphic automorphisms induced on a strictly geometrically bounded domain by a biholomorphism with a model domain is parabolic. This result is related to the Greene-Krantz conjecture and more generally to the classification of domains having a non compact automorphisms group. The proof relies on elementary estimates on the Kobayashi pseudo-metric.

How to cite

top

Berteloot, François, and Thu, Ninh Van. "On the existence of parabolic actions in convex domains of $\mathbb {C}^{k+1}$." Czechoslovak Mathematical Journal 65.3 (2015): 579-585. <http://eudml.org/doc/271806>.

@article{Berteloot2015,
abstract = {We prove that the one-parameter group of holomorphic automorphisms induced on a strictly geometrically bounded domain by a biholomorphism with a model domain is parabolic. This result is related to the Greene-Krantz conjecture and more generally to the classification of domains having a non compact automorphisms group. The proof relies on elementary estimates on the Kobayashi pseudo-metric.},
author = {Berteloot, François, Thu, Ninh Van},
journal = {Czechoslovak Mathematical Journal},
keywords = {parabolic boundary point; convex domain; automorphism group},
language = {eng},
number = {3},
pages = {579-585},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the existence of parabolic actions in convex domains of $\mathbb \{C\}^\{k+1\}$},
url = {http://eudml.org/doc/271806},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Berteloot, François
AU - Thu, Ninh Van
TI - On the existence of parabolic actions in convex domains of $\mathbb {C}^{k+1}$
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 3
SP - 579
EP - 585
AB - We prove that the one-parameter group of holomorphic automorphisms induced on a strictly geometrically bounded domain by a biholomorphism with a model domain is parabolic. This result is related to the Greene-Krantz conjecture and more generally to the classification of domains having a non compact automorphisms group. The proof relies on elementary estimates on the Kobayashi pseudo-metric.
LA - eng
KW - parabolic boundary point; convex domain; automorphism group
UR - http://eudml.org/doc/271806
ER -

References

top
  1. Bedford, E., Pinchuk, S., 10.1512/iumj.1998.47.1552, Indiana Univ. Math. J. 47 (1998), 199-222. (1998) MR1631557DOI10.1512/iumj.1998.47.1552
  2. Bedford, E., Pinchuk, S., 10.1007/BF02921302, J. Geom. Anal. 1 (1991), 165-191. (1991) MR1120679DOI10.1007/BF02921302
  3. Bedford, E., Pinchuk, S. I., 10.1070/SM1989v063n01ABEH003264, Math. USSR, Sb. 63 (1989), 141-151 translation from Mat. Sb., Nov. Ser. 135(177) (1988), 147-157, 271 Russian. (1988) MR0937803DOI10.1070/SM1989v063n01ABEH003264
  4. Berteloot, F., 10.1007/BF02930994, J. Geom. Anal. 13 French (2003), 29-37. (2003) MR1967034DOI10.1007/BF02930994
  5. Berteloot, F., 10.1142/S0129167X94000322, Int. J. Math. 5 (1994), 619-634. (1994) MR1297410DOI10.1142/S0129167X94000322
  6. Berteloot, F., Cœuré, G., 10.5802/aif.1249, Ann. Inst. Fourier 41 French (1991), 77-86. (1991) MR1112192DOI10.5802/aif.1249
  7. Byun, J., Gaussier, H., 10.1016/j.crma.2005.09.018, C. R., Math., Acad. Sci. Paris 341 (2005), 545-548. (2005) Zbl1086.32020MR2181391DOI10.1016/j.crma.2005.09.018
  8. Greene, R. E., Krantz, S. G., Techniques for studying automorphisms of weakly pseudoconvex domains, Several Complex Variables: Proceedings of the Mittag-Leffler Institute, Stockholm, Sweden, 1987/1988 Math. Notes 38 Princeton University Press, Princeton (1993), 389-410 J. E. Fornæss. (1993) Zbl0779.32017MR1207869
  9. Isaev, A. V., Krantz, S. G., 10.1006/aima.1998.1821, Adv. Math. 146 (1999), 1-38. (1999) Zbl1040.32019MR1706680DOI10.1006/aima.1998.1821
  10. Kang, H., 10.2748/tmj/1178225723, Tohoku Math. J. (2) 46 (1994), 435-442. (1994) Zbl0817.32011MR1289190DOI10.2748/tmj/1178225723
  11. Kim, K.-T., 10.1006/jmaa.1993.1362, J. Math. Anal. Appl. 179 (1993), 463-482. (1993) MR1249831DOI10.1006/jmaa.1993.1362
  12. Kim, K.-T., Krantz, S. G., 10.1016/S0022-247X(03)00003-9, J. Math. Anal. Appl. 281 (2003), 417-424. (2003) Zbl1035.32019MR1982663DOI10.1016/S0022-247X(03)00003-9
  13. Kim, K.-T., Krantz, S. G., 10.1215/ijm/1258138066, Ill. J. Math. 45 (2001), 1273-1299. (2001) Zbl1065.32014MR1895457DOI10.1215/ijm/1258138066
  14. Landucci, M., 10.1215/ijm/1258131057, Ill. J. Math. 48 (2004), 875-885. (2004) Zbl1065.32016MR2114256DOI10.1215/ijm/1258131057
  15. Rosay, J.-P., 10.5802/aif.768, Ann. Inst. Fourier 29 French (1979), 91-97. (1979) MR0558590DOI10.5802/aif.768
  16. Wong, B., 10.1007/BF01403050, Invent. Math. 41 (1977), 253-257. (1977) MR0492401DOI10.1007/BF01403050

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.