Domaines de , pseudoconvexes et de type fini ayant un groupe non compact d’automorphismes
Annales de l'institut Fourier (1991)
- Volume: 41, Issue: 1, page 77-86
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] E. BEDFORD and S. PINČUK, Domains in C2 with non compact holomorphic automorphism groups, Math. USSR Sbornik, Vol. 63, (1989), 141-151. Zbl0668.32029
- [2] D. CATLIN, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math., Z., 200, (1989), 429-466. Zbl0661.32030MR90e:32029
- [3] J.E. FORNAESS and N. SIBONY, Construction of p.s.h. functions on weakly pseudoconvex domains, Duke Math., J. 58, 633-655. Zbl0679.32017MR90m:32034
- [4] J.E. FORNAESS and B. STENSONES, Lectures on counterexamples in several complex variables, Mathematical Notes, Princeton University Press. Zbl0626.32001
- [5] R.E. GREENE and S.G. KRANTZ, Characterizations of certain weakly pseudoconvex domains with non compact automorphism groups, Lecture Notes in Math., 1268, (1987), 121-157. Zbl0626.32023MR89c:32044
- [6] S. PINČUK, Holomorphic maps in Cn and the problem of holomorphic equivalence, Encyclopaedia of Mathematical Sciences, Vol. 19, Springer Verlag (1989).
- [7] R. RICHBERG, Stetige streng pseudokonvexe Funktionen, Math. Ann., 175 (1968), 251-286. Zbl0153.15401MR36 #5386
- [8] J.P. ROSAY, Sur une caractérisation de la boule parmi les domaines de Cn par son groupe d'automorphismes, Ann. Inst. Fourier, 29-4 (1979), 91-97. Zbl0402.32001MR81a:32016
- [9] N. SIBONY, Une classe de domaines pseudoconvexes, Duke Math. J., 55, n°2 (1987), 299-319. Zbl0622.32016MR88g:32036