On the invariant measure of the random difference equation Xn = AnXn−1 + Bn in the critical case

Sara Brofferio; Dariusz Buraczewski; Ewa Damek

Annales de l'I.H.P. Probabilités et statistiques (2012)

  • Volume: 48, Issue: 2, page 377-395
  • ISSN: 0246-0203

Abstract

top
We consider the autoregressive model on ℝd defined by the stochastic recursion Xn = AnXn−1 + Bn, where {(Bn, An)} are i.i.d. random variables valued in ℝd× ℝ+. The critical case, when 𝔼 [ log A 1 ] = 0 , was studied by Babillot, Bougerol and Elie, who proved that there exists a unique invariant Radon measureν for the Markov chain {Xn}. In the present paper we prove that the weak limit of properly dilated measure ν exists and defines a homogeneous measure on ℝd ∖ {0}.

How to cite

top

Brofferio, Sara, Buraczewski, Dariusz, and Damek, Ewa. "On the invariant measure of the random difference equation Xn = AnXn−1 + Bn in the critical case." Annales de l'I.H.P. Probabilités et statistiques 48.2 (2012): 377-395. <http://eudml.org/doc/271983>.

@article{Brofferio2012,
abstract = {We consider the autoregressive model on ℝd defined by the stochastic recursion Xn = AnXn−1 + Bn, where \{(Bn, An)\} are i.i.d. random variables valued in ℝd× ℝ+. The critical case, when $\mathbb \{E\}[\log A_\{1\}]=0$ , was studied by Babillot, Bougerol and Elie, who proved that there exists a unique invariant Radon measureν for the Markov chain \{Xn\}. In the present paper we prove that the weak limit of properly dilated measure ν exists and defines a homogeneous measure on ℝd ∖ \{0\}.},
author = {Brofferio, Sara, Buraczewski, Dariusz, Damek, Ewa},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk; random coefficients autoregressive model; affine group; random equations; contractive system; regular variation; invariant measure; homogeneous measure},
language = {eng},
number = {2},
pages = {377-395},
publisher = {Gauthier-Villars},
title = {On the invariant measure of the random difference equation Xn = AnXn−1 + Bn in the critical case},
url = {http://eudml.org/doc/271983},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Brofferio, Sara
AU - Buraczewski, Dariusz
AU - Damek, Ewa
TI - On the invariant measure of the random difference equation Xn = AnXn−1 + Bn in the critical case
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 2
SP - 377
EP - 395
AB - We consider the autoregressive model on ℝd defined by the stochastic recursion Xn = AnXn−1 + Bn, where {(Bn, An)} are i.i.d. random variables valued in ℝd× ℝ+. The critical case, when $\mathbb {E}[\log A_{1}]=0$ , was studied by Babillot, Bougerol and Elie, who proved that there exists a unique invariant Radon measureν for the Markov chain {Xn}. In the present paper we prove that the weak limit of properly dilated measure ν exists and defines a homogeneous measure on ℝd ∖ {0}.
LA - eng
KW - random walk; random coefficients autoregressive model; affine group; random equations; contractive system; regular variation; invariant measure; homogeneous measure
UR - http://eudml.org/doc/271983
ER -

References

top
  1. [1] M. Babillot, P. Bougerol and L. Élie. The random difference equation Xn = AnXn−1 + Bn in the critical case. Ann. Probab. 25 (1997) 478–493. Zbl0873.60045
  2. [2] M. Benda. Contractive stochastic dynamical systems. Unpublished manuscript, Ludwig-Maximilians-Universität München, 1999. 
  3. [3] S. Brofferio. How a centred random walk on the affine group goes to infinity. Ann. Inst. Henri Poincaré Probab. Statist.39 (2003) 371–384. Zbl1016.60006
  4. [4] D. Buraczewski. On invariant measures of stochastic recursions in a critical case. Ann. Appl. Probab.17 (2007) 1245–1272. Zbl1151.60034
  5. [5] D. Buraczewski. On tails of fixed points of the smoothing transform in the boundary case. Stochastic Process. Appl.119 (2009) 3955–3961. Zbl1183.60031
  6. [6] D. Buraczewski, E. Damek and A. Hulanicki. Asymptotic behavior of Poisson kernels NA group. Comm. Partial Differential Equations31 (2006) 1547–1589. Zbl1109.22005
  7. [7] D. I. Cartwright, V. A. Kaimanovich and W. Woess. Random walks on the affine group of local fields and of homogeneous trees. Ann. Inst. Fourier (Grenoble) 44 (1994) 1243–1288. Zbl0809.60010
  8. [8] E. Damek and A. Hulanicki. Asymptotic behavior of the invariant measure for a diffusion related to a NA group. Colloq. Math.104 (2006) 285–309. Zbl1087.22006
  9. [9] G. Choquet and J. Deny. Sur l’équation de convolution μ = μ * σ. C. R. Acad. Sci. Paris 250 (1960) 799-801 (in French). Zbl0093.12802
  10. [10] L. Élie. Comportement asymptotique du noyau potentiel sur les groupes de Lie. Ann. Sci. École Norm. Sup. (4) 15 (1982) 257–364. Zbl0509.60070
  11. [11] W. Feller. An Introduction to Probability Theory and Its Application, Vol. II. Wiley, New York, 1966. Zbl0219.60003MR210154
  12. [12] G. B. Folland and E. Stein. Hardy Spaces on Homogeneous Groups. Princeton Univ. Press, Princeton, NJ, 1982. Zbl0508.42025MR657581
  13. [13] C. M. Goldie. Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab.1 (1991) 126–166. Zbl0724.60076MR1097468
  14. [14] A. K. Grincevičjus. Limit theorem for products of random linear transformations of the line. Litovsk. Mat. Sb. 15 (1975) 61–77, 241 (in Russian). Zbl0362.60018
  15. [15] A. K. Grincevičjus. On a limit distribution for a random walk on lines. Litovsk. Mat. Sb. 15 (1975) 79–91, 243 (in Russian). Zbl0373.60009MR448571
  16. [16] H. Kesten. Random difference equations and renewal theory for products of random matrices. Acta Math.131 (1973) 207–248. Zbl0291.60029MR440724
  17. [17] É. Le Page and M. Peigné. A local limit theorem on the semi-direct product of R∗+ and Rd. Ann. Inst. Henri Poincaré Probab. Statist.33 (1997) 223–252. Zbl0881.60018MR1443957
  18. [18] S. C. Port and C. J. Stone. Hitting time and hitting places for non-lattice recurrent random walks. J. Math. Mech.17 (1967) 35–57. Zbl0187.41202MR215375
  19. [19] S. C. Port and C. J. Stone. Potential theory of random walks on Abelian groups. Acta Math.122 (1969) 19–114. Zbl0183.47201MR261706

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.