On the invariant measure of the random difference equation Xn = AnXn−1 + Bn in the critical case
Sara Brofferio; Dariusz Buraczewski; Ewa Damek
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 2, page 377-395
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBrofferio, Sara, Buraczewski, Dariusz, and Damek, Ewa. "On the invariant measure of the random difference equation Xn = AnXn−1 + Bn in the critical case." Annales de l'I.H.P. Probabilités et statistiques 48.2 (2012): 377-395. <http://eudml.org/doc/271983>.
@article{Brofferio2012,
abstract = {We consider the autoregressive model on ℝd defined by the stochastic recursion Xn = AnXn−1 + Bn, where \{(Bn, An)\} are i.i.d. random variables valued in ℝd× ℝ+. The critical case, when $\mathbb \{E\}[\log A_\{1\}]=0$ , was studied by Babillot, Bougerol and Elie, who proved that there exists a unique invariant Radon measureν for the Markov chain \{Xn\}. In the present paper we prove that the weak limit of properly dilated measure ν exists and defines a homogeneous measure on ℝd ∖ \{0\}.},
author = {Brofferio, Sara, Buraczewski, Dariusz, Damek, Ewa},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk; random coefficients autoregressive model; affine group; random equations; contractive system; regular variation; invariant measure; homogeneous measure},
language = {eng},
number = {2},
pages = {377-395},
publisher = {Gauthier-Villars},
title = {On the invariant measure of the random difference equation Xn = AnXn−1 + Bn in the critical case},
url = {http://eudml.org/doc/271983},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Brofferio, Sara
AU - Buraczewski, Dariusz
AU - Damek, Ewa
TI - On the invariant measure of the random difference equation Xn = AnXn−1 + Bn in the critical case
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 2
SP - 377
EP - 395
AB - We consider the autoregressive model on ℝd defined by the stochastic recursion Xn = AnXn−1 + Bn, where {(Bn, An)} are i.i.d. random variables valued in ℝd× ℝ+. The critical case, when $\mathbb {E}[\log A_{1}]=0$ , was studied by Babillot, Bougerol and Elie, who proved that there exists a unique invariant Radon measureν for the Markov chain {Xn}. In the present paper we prove that the weak limit of properly dilated measure ν exists and defines a homogeneous measure on ℝd ∖ {0}.
LA - eng
KW - random walk; random coefficients autoregressive model; affine group; random equations; contractive system; regular variation; invariant measure; homogeneous measure
UR - http://eudml.org/doc/271983
ER -
References
top- [1] M. Babillot, P. Bougerol and L. Élie. The random difference equation Xn = AnXn−1 + Bn in the critical case. Ann. Probab. 25 (1997) 478–493. Zbl0873.60045
- [2] M. Benda. Contractive stochastic dynamical systems. Unpublished manuscript, Ludwig-Maximilians-Universität München, 1999.
- [3] S. Brofferio. How a centred random walk on the affine group goes to infinity. Ann. Inst. Henri Poincaré Probab. Statist.39 (2003) 371–384. Zbl1016.60006
- [4] D. Buraczewski. On invariant measures of stochastic recursions in a critical case. Ann. Appl. Probab.17 (2007) 1245–1272. Zbl1151.60034
- [5] D. Buraczewski. On tails of fixed points of the smoothing transform in the boundary case. Stochastic Process. Appl.119 (2009) 3955–3961. Zbl1183.60031
- [6] D. Buraczewski, E. Damek and A. Hulanicki. Asymptotic behavior of Poisson kernels NA group. Comm. Partial Differential Equations31 (2006) 1547–1589. Zbl1109.22005
- [7] D. I. Cartwright, V. A. Kaimanovich and W. Woess. Random walks on the affine group of local fields and of homogeneous trees. Ann. Inst. Fourier (Grenoble) 44 (1994) 1243–1288. Zbl0809.60010
- [8] E. Damek and A. Hulanicki. Asymptotic behavior of the invariant measure for a diffusion related to a NA group. Colloq. Math.104 (2006) 285–309. Zbl1087.22006
- [9] G. Choquet and J. Deny. Sur l’équation de convolution μ = μ * σ. C. R. Acad. Sci. Paris 250 (1960) 799-801 (in French). Zbl0093.12802
- [10] L. Élie. Comportement asymptotique du noyau potentiel sur les groupes de Lie. Ann. Sci. École Norm. Sup. (4) 15 (1982) 257–364. Zbl0509.60070
- [11] W. Feller. An Introduction to Probability Theory and Its Application, Vol. II. Wiley, New York, 1966. Zbl0219.60003MR210154
- [12] G. B. Folland and E. Stein. Hardy Spaces on Homogeneous Groups. Princeton Univ. Press, Princeton, NJ, 1982. Zbl0508.42025MR657581
- [13] C. M. Goldie. Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab.1 (1991) 126–166. Zbl0724.60076MR1097468
- [14] A. K. Grincevičjus. Limit theorem for products of random linear transformations of the line. Litovsk. Mat. Sb. 15 (1975) 61–77, 241 (in Russian). Zbl0362.60018
- [15] A. K. Grincevičjus. On a limit distribution for a random walk on lines. Litovsk. Mat. Sb. 15 (1975) 79–91, 243 (in Russian). Zbl0373.60009MR448571
- [16] H. Kesten. Random difference equations and renewal theory for products of random matrices. Acta Math.131 (1973) 207–248. Zbl0291.60029MR440724
- [17] É. Le Page and M. Peigné. A local limit theorem on the semi-direct product of R∗+ and Rd. Ann. Inst. Henri Poincaré Probab. Statist.33 (1997) 223–252. Zbl0881.60018MR1443957
- [18] S. C. Port and C. J. Stone. Hitting time and hitting places for non-lattice recurrent random walks. J. Math. Mech.17 (1967) 35–57. Zbl0187.41202MR215375
- [19] S. C. Port and C. J. Stone. Potential theory of random walks on Abelian groups. Acta Math.122 (1969) 19–114. Zbl0183.47201MR261706
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.