Gradient flows of the entropy for jump processes

Matthias Erbar

Annales de l'I.H.P. Probabilités et statistiques (2014)

  • Volume: 50, Issue: 3, page 920-945
  • ISSN: 0246-0203

Abstract

top
We introduce a new transport distance between probability measures on d that is built from a Lévy jump kernel. It is defined via a non-local variant of the Benamou–Brenier formula. We study geometric and topological properties of this distance, in particular we prove existence of geodesics. For translation invariant jump kernels we identify the semigroup generated by the associated non-local operator as the gradient flow of the relative entropy w.r.t. the new distance and show that the entropy is convex along geodesics.

How to cite

top

Erbar, Matthias. "Gradient flows of the entropy for jump processes." Annales de l'I.H.P. Probabilités et statistiques 50.3 (2014): 920-945. <http://eudml.org/doc/272002>.

@article{Erbar2014,
abstract = {We introduce a new transport distance between probability measures on $\mathbb \{R\}^\{d\}$ that is built from a Lévy jump kernel. It is defined via a non-local variant of the Benamou–Brenier formula. We study geometric and topological properties of this distance, in particular we prove existence of geodesics. For translation invariant jump kernels we identify the semigroup generated by the associated non-local operator as the gradient flow of the relative entropy w.r.t. the new distance and show that the entropy is convex along geodesics.},
author = {Erbar, Matthias},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {jump process; Lévy process; gradient flow; entropy; optimal transport; jump processes; Lévy processes; non-local operator},
language = {eng},
number = {3},
pages = {920-945},
publisher = {Gauthier-Villars},
title = {Gradient flows of the entropy for jump processes},
url = {http://eudml.org/doc/272002},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Erbar, Matthias
TI - Gradient flows of the entropy for jump processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 3
SP - 920
EP - 945
AB - We introduce a new transport distance between probability measures on $\mathbb {R}^{d}$ that is built from a Lévy jump kernel. It is defined via a non-local variant of the Benamou–Brenier formula. We study geometric and topological properties of this distance, in particular we prove existence of geodesics. For translation invariant jump kernels we identify the semigroup generated by the associated non-local operator as the gradient flow of the relative entropy w.r.t. the new distance and show that the entropy is convex along geodesics.
LA - eng
KW - jump process; Lévy process; gradient flow; entropy; optimal transport; jump processes; Lévy processes; non-local operator
UR - http://eudml.org/doc/272002
ER -

References

top
  1. [1] L. Ambrosio, N. Gigli and G. Savaré. Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition. Lectures in Mathematics. Birkhäuser, Basel, 2008. Zbl1090.35002MR2401600
  2. [2] L. Ambrosio, N. Gigli and G. Savaré. Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Preprint, 2011. Available at arXiv:1106.2090. Zbl1312.53056MR3152751
  3. [3] L. Ambrosio, G. Savaré and L. Zambotti. Existence and stability for Fokker–Planck equations with log-concave reference measure. Probab. Theory Related Fields145 (2009) 517–564. Zbl1235.60105MR2529438
  4. [4] D. Applebaum. Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics 93. Cambridge Univ. Press, Cambridge, 2004. Zbl1073.60002MR2072890
  5. [5] D. Bakry and M. Émery. Diffusions hypercontractives. In Séminaire de Probabilités XIX 177–206. Lecture Notes in Math. 1123. Springer, Berlin, 1985. Zbl0561.60080MR889476
  6. [6] M. Barlow, R. Bass, Z.-G. Chen and M. Kassmann. Non-local Dirichlet forms and symmetric jump processes. Trans. Amer. Math. Soc.361 (2009) 1963–1999. Zbl1166.60045MR2465826
  7. [7] J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math.84 (2000) 375–393. Zbl0968.76069MR1738163
  8. [8] J. Bertoin. Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge, 1996. Zbl0861.60003MR1406564
  9. [9] G. Buttazzo. Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Pitman Research Notes in Mathematics Series. Longman Scientific and Technical, Harlow, 1989. Zbl0669.49005MR1020296
  10. [10] L. Caffarelli and L. Silvestre. The Evans–Krylov theorem for nonlocal fully nonlinear equations. Ann. of Math. (2) 174 (2011) 1163–1187. Zbl1232.49043MR2831115
  11. [11] Z.-Q. Chen and T. Kumagai. Heat kernel estimates for stable-like processes on d -sets. Stochastic Process. Appl.108 (2003) 27–62. Zbl1075.60556MR2008600
  12. [12] S.-N. Chow, W. Huang, Y. Li and H. Zhou. Fokker–Planck equations for a free energy functional or Markov process on a graph. Arch. Ration. Mech. Anal.203 (2012) 969–1008. Zbl1256.35173MR2928139
  13. [13] S. Daneri and G. Savaré. Eulerian calculus for the displacement convexity in the Wasserstein distance. SIAM J. Math. Anal.40 (2008) 1104–1122. Zbl1166.58011MR2452882
  14. [14] J. Dolbeault, B. Nazaret and G. Savaré. A new class of transport distances between measures. Calc. Var. Partial Differential Equations34 (2009) 193–231. Zbl1157.49042MR2448650
  15. [15] M. Erbar. The heat equation on manifolds as a gradient flow in the Wasserstein space. Ann. Inst. Henri Poincaré Probab. Stat.46 (2010) 1–23. Zbl1215.35016MR2641767
  16. [16] M. Erbar and J. Maas. Ricci curvature of finite Markov chains via convexity of the entropy. Arch. Ration. Mech. Anal.206 (2012) 997–1038. Zbl1256.53028MR2989449
  17. [17] S. Fang, J. Shao and K.-Th. Sturm. Wasserstein space over the Wiener space. Probab. Theory Related Fields146 (2010) 535–565. Zbl1201.37095MR2574738
  18. [18] N. Gigli. On the heat flow on metric measure spaces: Existence, uniqueness and stability. Calc. Var. Partial Differential Equations39 (2010) 101–120. Zbl1200.35178MR2659681
  19. [19] N. Gigli, K. Kuwada and S.-I. Ohta. Heat flow on Alexandrov spaces. Comm. Pure Appl. Math.66 (2013) 307–331. Zbl1267.58014MR3008226
  20. [20] R. Jordan, D. Kinderlehrer and F. Otto. The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal.29 (1998) 1–17. Zbl0915.35120MR1617171
  21. [21] J. Lott and C. Villani. Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2) 169 (2009) 903–991. Zbl1178.53038MR2480619
  22. [22] J. Maas. Gradient flows of the entropy for finite Markov chains. J. Funct. Anal.261 (2011) 2250–2292. Zbl1237.60058MR2824578
  23. [23] R. McCann. A convexity principle for interacting gases. Adv. Math.128 (1997) 153–179. Zbl0901.49012MR1451422
  24. [24] A. Mielke. Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var. Partial Differential Equations48 (2013) 1–31. Zbl1282.60072MR3090532
  25. [25] S.-I. Ohta and K.-Th. Sturm. Heat flow on Finsler manifolds. Comm. Pure Appl. Math.62 (2009) 1386–1433. Zbl1176.58012MR2547978
  26. [26] F. Otto. The geometry of dissipative evolution equations: The porous medium equation. Comm. Partial Differential Equations26 (2001) 101–174. Zbl0984.35089MR1842429
  27. [27] F. Otto and C. Villani. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal.173 (2000) 361–400. Zbl0985.58019MR1760620
  28. [28] K.-Th. Sturm. On the geometry of metric measure spaces. I. Acta Math.196 (2006) 65–131. Zbl1105.53035MR2237206
  29. [29] K.-Th. Sturm. On the geometry of metric measure spaces. II. Acta Math.196 (2006) 133–177. Zbl1106.53032MR2237207
  30. [30] C. Villani. Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften 338. Springer, Berlin, 2009. Zbl1156.53003MR2459454

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.