The heat equation on manifolds as a gradient flow in the Wasserstein space
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 1, page 1-23
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. Ambrosio, N. Gigli and G. Savaré. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser, Basel, 2005. Zbl1145.35001MR2129498
- [2] L. Ambrosio and G. Savaré. Gradient Flows of Probability Measures. In Handbook of Differential Equations: Evolution Equations 1–136. Elsevier, 2006. Zbl1203.35002MR2549368
- [3] J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. Zbl0968.76069MR1738163
- [4] P. Bernard. Young measures, superposition and transport. Indiana Univ. Math. J. 57 (2008) 247–276. Zbl1239.49059MR2400257
- [5] I. Chavel. Riemannian Geometry – a Modern Introduction. Cambridge Tracts in Mathematics 108. Cambridge Univ. Press, Cambridge, 1993. Zbl0810.53001MR1271141
- [6] J. Dodziuk. Maximum principles for parabolic inequalities and the heat flow on open manifolds. Indiana Univ. Math. J. 32 (1983) 703–716. Zbl0526.58047MR711862
- [7] R. Jordan, D. Kinderlehrer and F. Otto. The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. Zbl0915.35120MR1617171
- [8] R.J. McCann. A convexity principle for interacting gases. Adv. Math. 128 (1997) 153–179. Zbl0901.49012MR1451422
- [9] R.J. McCann. Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11 (2001) 589–608. Zbl1011.58009MR1844080
- [10] S.-I. Ohta. Gradient flows on Wasserstein spaces over compact Alexandrov spaces. Amer. J. Math. 2008. To appear. Zbl1169.53053MR2503990
- [11] G. Savaré. Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds. C. R. Acad. Sci. 345 (2007) 151–154. Zbl1125.53064
- [12] K.-T. Sturm. Convex functionals of probability measures and nonlinear diffusions on manifolds. J. Math. Pures Appl. 84 (2005) 149–168. Zbl1259.49074
- [13] K.-T. Sturm. On the geometry of metric measure spaces. Acta Math. 196 (2006) 65–131. Zbl1105.53035MR2237206
- [14] C. Villani. Optimal Transport, Old and New. Grundlehren der Mathematischen Wissenschaften 338. Springer, Berlin, Heidelberg, 2009. Zbl1156.53003MR2459454