The heat equation on manifolds as a gradient flow in the Wasserstein space
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 1, page 1-23
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topErbar, Matthias. "The heat equation on manifolds as a gradient flow in the Wasserstein space." Annales de l'I.H.P. Probabilités et statistiques 46.1 (2010): 1-23. <http://eudml.org/doc/241521>.
@article{Erbar2010,
abstract = {We study the gradient flow for the relative entropy functional on probability measures over a riemannian manifold. To this aim we present a notion of a riemannian structure on the Wasserstein space. If the Ricci curvature is bounded below we establish existence and contractivity of the gradient flow using a discrete approximation scheme. Furthermore we show that its trajectories coincide with solutions to the heat equation.},
author = {Erbar, Matthias},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {gradient flow; Wasserstein metric; relative entropy; heat equation; Riemannian manifold},
language = {eng},
number = {1},
pages = {1-23},
publisher = {Gauthier-Villars},
title = {The heat equation on manifolds as a gradient flow in the Wasserstein space},
url = {http://eudml.org/doc/241521},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Erbar, Matthias
TI - The heat equation on manifolds as a gradient flow in the Wasserstein space
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 1
SP - 1
EP - 23
AB - We study the gradient flow for the relative entropy functional on probability measures over a riemannian manifold. To this aim we present a notion of a riemannian structure on the Wasserstein space. If the Ricci curvature is bounded below we establish existence and contractivity of the gradient flow using a discrete approximation scheme. Furthermore we show that its trajectories coincide with solutions to the heat equation.
LA - eng
KW - gradient flow; Wasserstein metric; relative entropy; heat equation; Riemannian manifold
UR - http://eudml.org/doc/241521
ER -
References
top- [1] L. Ambrosio, N. Gigli and G. Savaré. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser, Basel, 2005. Zbl1145.35001MR2129498
- [2] L. Ambrosio and G. Savaré. Gradient Flows of Probability Measures. In Handbook of Differential Equations: Evolution Equations 1–136. Elsevier, 2006. Zbl1203.35002MR2549368
- [3] J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. Zbl0968.76069MR1738163
- [4] P. Bernard. Young measures, superposition and transport. Indiana Univ. Math. J. 57 (2008) 247–276. Zbl1239.49059MR2400257
- [5] I. Chavel. Riemannian Geometry – a Modern Introduction. Cambridge Tracts in Mathematics 108. Cambridge Univ. Press, Cambridge, 1993. Zbl0810.53001MR1271141
- [6] J. Dodziuk. Maximum principles for parabolic inequalities and the heat flow on open manifolds. Indiana Univ. Math. J. 32 (1983) 703–716. Zbl0526.58047MR711862
- [7] R. Jordan, D. Kinderlehrer and F. Otto. The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. Zbl0915.35120MR1617171
- [8] R.J. McCann. A convexity principle for interacting gases. Adv. Math. 128 (1997) 153–179. Zbl0901.49012MR1451422
- [9] R.J. McCann. Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11 (2001) 589–608. Zbl1011.58009MR1844080
- [10] S.-I. Ohta. Gradient flows on Wasserstein spaces over compact Alexandrov spaces. Amer. J. Math. 2008. To appear. Zbl1169.53053MR2503990
- [11] G. Savaré. Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds. C. R. Acad. Sci. 345 (2007) 151–154. Zbl1125.53064
- [12] K.-T. Sturm. Convex functionals of probability measures and nonlinear diffusions on manifolds. J. Math. Pures Appl. 84 (2005) 149–168. Zbl1259.49074
- [13] K.-T. Sturm. On the geometry of metric measure spaces. Acta Math. 196 (2006) 65–131. Zbl1105.53035MR2237206
- [14] C. Villani. Optimal Transport, Old and New. Grundlehren der Mathematischen Wissenschaften 338. Springer, Berlin, Heidelberg, 2009. Zbl1156.53003MR2459454
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.