Lagrangian fibrations on hyperkähler manifolds – On a question of Beauville

Daniel Greb; Christian Lehn; Sönke Rollenske

Annales scientifiques de l'École Normale Supérieure (2013)

  • Volume: 46, Issue: 3, page 375-403
  • ISSN: 0012-9593

Abstract

top
Let  X be a compact hyperkähler manifold containing a complex torus L as a Lagrangian subvariety. Beauville posed the question whether X admits a Lagrangian fibration with fibre L . We show that this is indeed the case if X is not projective. If X is projective we find an almost holomorphic Lagrangian fibration with fibre L under additional assumptions on the pair ( X , L ) , which can be formulated in topological or deformation-theoretic terms. Moreover, we show that for any such almost holomorphic Lagrangian fibration there exists a smooth good minimal model, i.e., a hyperkähler manifold birational to  X on which the fibration is holomorphic.

How to cite

top

Greb, Daniel, Lehn, Christian, and Rollenske, Sönke. "Lagrangian fibrations on hyperkähler manifolds – On a question of Beauville." Annales scientifiques de l'École Normale Supérieure 46.3 (2013): 375-403. <http://eudml.org/doc/272102>.

@article{Greb2013,
abstract = {Let $X$ be a compact hyperkähler manifold containing a complex torus $L$ as a Lagrangian subvariety. Beauville posed the question whether $X$ admits a Lagrangian fibration with fibre $L$. We show that this is indeed the case if $X$ is not projective. If $X$ is projective we find an almost holomorphic Lagrangian fibration with fibre $L$ under additional assumptions on the pair $(X, L)$, which can be formulated in topological or deformation-theoretic terms. Moreover, we show that for any such almost holomorphic Lagrangian fibration there exists a smooth good minimal model, i.e., a hyperkähler manifold birational to $X$ on which the fibration is holomorphic.},
author = {Greb, Daniel, Lehn, Christian, Rollenske, Sönke},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {hyperkähler manifold; lagrangian fibration},
language = {eng},
number = {3},
pages = {375-403},
publisher = {Société mathématique de France},
title = {Lagrangian fibrations on hyperkähler manifolds – On a question of Beauville},
url = {http://eudml.org/doc/272102},
volume = {46},
year = {2013},
}

TY - JOUR
AU - Greb, Daniel
AU - Lehn, Christian
AU - Rollenske, Sönke
TI - Lagrangian fibrations on hyperkähler manifolds – On a question of Beauville
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 3
SP - 375
EP - 403
AB - Let $X$ be a compact hyperkähler manifold containing a complex torus $L$ as a Lagrangian subvariety. Beauville posed the question whether $X$ admits a Lagrangian fibration with fibre $L$. We show that this is indeed the case if $X$ is not projective. If $X$ is projective we find an almost holomorphic Lagrangian fibration with fibre $L$ under additional assumptions on the pair $(X, L)$, which can be formulated in topological or deformation-theoretic terms. Moreover, we show that for any such almost holomorphic Lagrangian fibration there exists a smooth good minimal model, i.e., a hyperkähler manifold birational to $X$ on which the fibration is holomorphic.
LA - eng
KW - hyperkähler manifold; lagrangian fibration
UR - http://eudml.org/doc/272102
ER -

References

top
  1. [1] E. Amerik & F. Campana, Fibrations méromorphes sur certaines variétés à fibré canonique trivial, Pure Appl. Math. Q.4 (2008), 509–545. Zbl1143.14035MR2400885
  2. [2] D. Barlet, Espace analytique réduit des cycles analytiques complexes compacts d’un espace analytique complexe de dimension finie, in Fonctions de plusieurs variables complexes, II (Sém. François Norguet, 1974–1975), Lecture Notes in Math. 482, Springer, 1975, 1–158. Zbl0331.32008MR399503
  3. [3] D. Barlet, How to use the cycle space in complex geometry, in Several complex variables (Berkeley, CA, 1995–1996), Math. Sci. Res. Inst. Publ. 37, Cambridge Univ. Press, 1999, 25–42. Zbl0962.32016MR1748599
  4. [4] T. Bauer, F. Campana, T. Eckl, S. Kebekus, T. Peternell, S. Rams, T. Szemberg & L. Wotzlaw, A reduction map for nef line bundles, in Complex geometry (Göttingen, 2000), Springer, 2002, 27–36. Zbl1054.14019MR1922095
  5. [5] A. Beauville, Variétés kählériennes dont la première classe de Chern est nulle, J. Differential Geom.18 (1983), 755–782. Zbl0537.53056MR730926
  6. [6] A. Beauville, Symplectic singularities, Invent. Math.139 (2000), 541–549. Zbl0958.14001MR1738060
  7. [7] A. Beauville, Holomorphic symplectic geometry: a problem list, in Complex and differential geometry, Springer Proc. Math. 8, Springer, 2011, 49–63. Zbl1231.32012MR2964467
  8. [8] C. Birkar, P. Cascini, C. D. Hacon & J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc.23 (2010), 405–468. Zbl1210.14019MR2601039
  9. [9] F. Campana, Isotrivialité de certaines familles kählériennes de variétés non projectives, Math. Z.252 (2006), 147–156. MR2209156
  10. [10] F. Campana, K. Oguiso & T. Peternell, Non-algebraic hyperkähler manifolds, J. Differential Geom.85 (2010), 397–424. Zbl1232.53042MR2739808
  11. [11] P. Cascini & V. Lazić, New outlook on the Minimal Model program I, preprint arXiv:1009.3188, to appear in Duke Math J. Zbl1261.14007MR2972461
  12. [12] J.-P. Demailly, Multiplier ideal sheaves and analytic methods in algebraic geometry, in School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000), ICTP Lect. Notes 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001, 1–148. MR1919457
  13. [13] G. Dloussky & A. Teleman, Infinite bubbling in non-Kählerian geometry, Math. Ann.353 (2012), 1283–1314. Zbl1252.32026MR2944030
  14. [14] R. Donagi & E. Markman, Spectral covers, algebraically completely integrable, Hamiltonian systems, and moduli of bundles, in Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math. 1620, Springer, 1996, 1–119. Zbl0853.35100MR1397273
  15. [15] A. Douady, Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné, Ann. Inst. Fourier (Grenoble) 16 (1966), 1–95. Zbl0146.31103MR203082
  16. [16] A. Fujiki, Closedness of the Douady spaces of compact Kähler spaces, Publ. Res. Inst. Math. Sci. 14 (1978/79), 1–52. Zbl0409.32016MR486648
  17. [17] A. Fujiki, On the Douady space of a compact complex space in the category 𝒞 , Nagoya Math. J.85 (1982), 189–211. Zbl0445.32017MR648422
  18. [18] H. Grauert, T. Peternell & R. Remmert (éds.), Several complex variables. VII, Encyclopaedia of Math. Sciences 74, Springer, 1994. MR1326617
  19. [19] C. D. Hacon & C. Xu, Existence of log canonical closures, preprint arXiv:1105.1169. Zbl1282.14027MR3032329
  20. [20] D. Huybrechts, Compact hyperkähler manifolds: basic results, Invent. Math.135 (1999), 63–113. Zbl0953.53031MR1664696
  21. [21] D. Huybrechts, Compact hyperkähler manifolds, in Calabi-Yau manifolds and related geometries (Nordfjordeid, 2001), Universitext, Springer, 2003, 161–225. MR1963562
  22. [22] J.-M. Hwang, Geometry of minimal rational curves on Fano manifolds, in School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000), ICTP Lect. Notes 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001, 335–393. MR1919462
  23. [23] J.-M. Hwang & R. M. Weiss, Webs of Lagrangian tori in projective symplectic manifolds, preprint arXiv:1201.2369, to appear in Inv. math. Zbl1276.14059MR3032327
  24. [24] Y. Kawamata, Flops connect minimal models, Publ. Res. Inst. Math. Sci.44 (2008), 419–423. Zbl1145.14014MR2426353
  25. [25] K. Kodaira & D. C. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures, Ann. of Math. 71 (1960), 43–76. Zbl0128.16902MR115189
  26. [26] J. Kollár & S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics 134, Cambridge Univ. Press, 1998. Zbl0926.14003MR1658959
  27. [27] C.-J. Lai, Varieties fibered by good minimal models, Math. Ann.350 (2011), 533–547. Zbl1221.14018MR2805635
  28. [28] R. Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse Math. Grenzg. 49, Springer, 2004. Zbl1093.14500MR2095472
  29. [29] C. Lehn, Symplectic Lagrangian fibrations, Dissertation, Johannes Gutenberg Universität, Mainz, 2011. 
  30. [30] D. I. Lieberman, Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds, in Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975–1977), Lecture Notes in Math. 670, Springer, 1978, 140–186. MR521918
  31. [31] D. Matsushita, On fibre space structures of a projective irreducible symplectic manifold, Topology38 (1999), 79–83. Zbl0932.32027MR1644091
  32. [32] D. Matsushita, Equidimensionality of Lagrangian fibrations on holomorphic symplectic manifolds, Math. Res. Lett.7 (2000), 389–391. Zbl1002.53050MR1783616
  33. [33] D. Matsushita, Addendum to [31], Topology40 (2001), 431–432. MR1808227
  34. [34] D. Matsushita, Holomorphic symplectic manifolds and Lagrangian fibrations, Acta Appl. Math.75 (2003), 117–123. Zbl1030.53075MR1975562
  35. [35] D. Matsushita, On nef reductions of projective irreducible symplectic manifolds, Math. Z.258 (2008), 267–270. Zbl1129.14013MR2357635
  36. [36] D. Matsushita, On almost holomorphic Lagrangian fibrations, preprint arXiv:1209.1194. MR3175134
  37. [37] D. Matsushita, On deformations of Lagrangian fibrations, preprint arXiv:0903.2098. 
  38. [38] B. G. Moishezon, On n -dimensional compact complex varieties with n algebraically independent meromorphic functions. I–III, Am. Math. Soc. Transl. 63 (1967), 51–177. 
  39. [39] Y. Namikawa, On deformations of -factorial symplectic varieties, J. reine angew. Math. 599 (2006), 97–110. Zbl1122.14029MR2279099
  40. [40] Z. Ran, Lifting of cohomology and unobstructedness of certain holomorphic maps, Bull. Amer. Math. Soc. (N.S.) 26 (1992), 113–117. Zbl0749.32010MR1102754
  41. [41] J. Sawon, Abelian fibred holomorphic symplectic manifolds, Turkish J. Math.27 (2003), 197–230. Zbl1065.53067MR1975339
  42. [42] M. Verbitsky, HyperKähler SYZ conjecture and semipositive line bundles, Geom. Funct. Anal.19 (2010), 1481–1493. Zbl1188.53046MR2585581
  43. [43] C. Voisin, Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes, in Complex projective geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lecture Note Ser. 179, Cambridge Univ. Press, 1992, 294–303. MR1201391
  44. [44] J. Wierzba, Birational geometry of symplectic 4-folds, unpublished manuscript, currently available at http://www.mimuw.edu.pl/~jarekw/postscript/bir4fd.ps, 2002. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.