A Geometric Study of the Monodromy of Complex Analytic Surfaces.
Let be a two dimensional totally real submanifold of class in . A continuous map of the closed unit disk into that is holomorphic on the open disk and maps its boundary into is called an analytic disk with boundary in . Given an initial immersed analytic disk with boundary in , we describe the existence and behavior of analytic disks near with boundaries in small perturbations of in terms of the homology class of the closed curve in . We also prove a regularity theorem...
An universal analytic structure is construted on the set of (singular) holomorphic foliations on a normal compact space. Such a foliation is by definition a coherent subsheaf of the holomorphic tangent sheaf stable by the Lie-bracket
Let a smooth projective family and a pseudo-effective line bundle on (i.e. with a non-negative curvature current ). In its works on invariance of plurigenera, Y.-T. Siu was interested in extending sections of (defined over the central fiber of the family ) to sections of . In this article we consider the following problem: to extend sections of . More precisely, we show the following result: assuming the triviality of the multiplier ideal sheaf , any section of extends to ; in other...
Let be a compact hyperkähler manifold containing a complex torus as a Lagrangian subvariety. Beauville posed the question whether admits a Lagrangian fibration with fibre . We show that this is indeed the case if is not projective. If is projective we find an almost holomorphic Lagrangian fibration with fibre under additional assumptions on the pair , which can be formulated in topological or deformation-theoretic terms. Moreover, we show that for any such almost holomorphic Lagrangian...