The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Herman’s last geometric theorem”

On the Lebesgue-Nagell equation

Andrzej Dąbrowski (2011)

Colloquium Mathematicae

Similarity:

We completely solve the Diophantine equations x ² + 2 a q b = y (for q = 17, 29, 41). We also determine all C = p a p k a k and C = 2 a p a p k a k , where p , . . . , p k are fixed primes satisfying certain conditions. The corresponding Diophantine equations x² + C = yⁿ may be studied by the method used by Abu Muriefah et al. (2008) and Luca and Togbé (2009).

Complete solutions of a Lebesgue-Ramanujan-Nagell type equation

Priyanka Baruah, Anup Das, Azizul Hoque (2024)

Archivum Mathematicum

Similarity:

We consider the Lebesgue-Ramanujan-Nagell type equation x 2 + 5 a 13 b 17 c = 2 m y n , where a , b , c , m 0 , n 3 and x , y 1 are unknown integers with gcd ( x , y ) = 1 . We determine all integer solutions to the above equation. The proof depends on the classical results of Bilu, Hanrot and Voutier on primitive divisors in Lehmer sequences, and finding all S -integral points on a class of elliptic curves.

On some Diophantine equations involving balancing numbers

Euloge Tchammou, Alain Togbé (2021)

Archivum Mathematicum

Similarity:

In this paper, we find all the solutions of the Diophantine equation B 1 p + 2 B 2 p + + k B k p = B n q in positive integer variables ( k , n ) , where B i is the i t h balancing number if the exponents p , q are included in the set { 1 , 2 } .

Diophantine equations involving factorials

Horst Alzer, Florian Luca (2017)

Mathematica Bohemica

Similarity:

We study the Diophantine equations ( k ! ) n - k n = ( n ! ) k - n k and ( k ! ) n + k n = ( n ! ) k + n k , where k and n are positive integers. We show that the first one holds if and only if k = n or ( k , n ) = ( 1 , 2 ) , ( 2 , 1 ) and that the second one holds if and only if k = n .

Finiteness results for Diophantine triples with repdigit values

Attila Bérczes, Florian Luca, István Pink, Volker Ziegler (2016)

Acta Arithmetica

Similarity:

Let g ≥ 2 be an integer and g be the set of repdigits in base g. Let g be the set of Diophantine triples with values in g ; that is, g is the set of all triples (a,b,c) ∈ ℕ³ with c < b < a such that ab + 1, ac + 1 and bc + 1 lie in the set g . We prove effective finiteness results for the set g .

On the diophantine equation x 2 + 2 a 3 b 73 c = y n

Murat Alan, Mustafa Aydin (2023)

Archivum Mathematicum

Similarity:

In this paper, we find all integer solutions ( x , y , n , a , b , c ) of the equation in the title for non-negative integers a , b and c under the condition that the integers x and y are relatively prime and n 3 . The proof depends on the famous primitive divisor theorem due to Bilu, Hanrot and Voutier and the computational techniques on some elliptic curves.

A note on the article by F. Luca “On the system of Diophantine equations a ² + b ² = ( m ² + 1 ) r and a x + b y = ( m ² + 1 ) z ” (Acta Arith. 153 (2012), 373-392)

Takafumi Miyazaki (2014)

Acta Arithmetica

Similarity:

Let r,m be positive integers with r > 1, m even, and A,B be integers satisfying A + B ( - 1 ) = ( m + ( - 1 ) ) r . We prove that the Diophantine equation | A | x + | B | y = ( m ² + 1 ) z has no positive integer solutions in (x,y,z) other than (x,y,z) = (2,2,r), whenever r > 10 74 or m > 10 34 . Our result is an explicit refinement of a theorem due to F. Luca.

On systems of diophantine equations with a large number of solutions

Jerzy Browkin (2010)

Colloquium Mathematicae

Similarity:

We consider systems of equations of the form x i + x j = x k and x i · x j = x k , which have finitely many integer solutions, proposed by A. Tyszka. For such a system we construct a slightly larger one with much more solutions than the given one.

Lucas sequences and repdigits

Hayder Raheem Hashim, Szabolcs Tengely (2022)

Mathematica Bohemica

Similarity:

Let ( G n ) n 1 be a binary linear recurrence sequence that is represented by the Lucas sequences of the first and second kind, which are { U n } and { V n } , respectively. We show that the Diophantine equation G n = B · ( g l m - 1 ) / ( g l - 1 ) has only finitely many solutions in n , m + , where g 2 , l is even and 1 B g l - 1 . Furthermore, these solutions can be effectively determined by reducing such equation to biquadratic elliptic curves. Then, by a result of Baker (and its best improvement due to Hajdu and Herendi) related to the bounds of the integral...

Integral points on the elliptic curve y 2 = x 3 - 4 p 2 x

Hai Yang, Ruiqin Fu (2019)

Czechoslovak Mathematical Journal

Similarity:

Let p be a fixed odd prime. We combine some properties of quadratic and quartic Diophantine equations with elementary number theory methods to determine all integral points on the elliptic curve E : y 2 = x 3 - 4 p 2 x . Further, let N ( p ) denote the number of pairs of integral points ( x , ± y ) on E with y > 0 . We prove that if p 17 , then N ( p ) 4 or 1 depending on whether p 1 ( mod 8 ) or p - 1 ( mod 8 ) .