Displaying similar documents to “Herman’s last geometric theorem”

On the Lebesgue-Nagell equation

Andrzej Dąbrowski (2011)

Colloquium Mathematicae

Similarity:

We completely solve the Diophantine equations x ² + 2 a q b = y (for q = 17, 29, 41). We also determine all C = p a p k a k and C = 2 a p a p k a k , where p , . . . , p k are fixed primes satisfying certain conditions. The corresponding Diophantine equations x² + C = yⁿ may be studied by the method used by Abu Muriefah et al. (2008) and Luca and Togbé (2009).

Complete solutions of a Lebesgue-Ramanujan-Nagell type equation

Priyanka Baruah, Anup Das, Azizul Hoque (2024)

Archivum Mathematicum

Similarity:

We consider the Lebesgue-Ramanujan-Nagell type equation x 2 + 5 a 13 b 17 c = 2 m y n , where a , b , c , m 0 , n 3 and x , y 1 are unknown integers with gcd ( x , y ) = 1 . We determine all integer solutions to the above equation. The proof depends on the classical results of Bilu, Hanrot and Voutier on primitive divisors in Lehmer sequences, and finding all S -integral points on a class of elliptic curves.

On some Diophantine equations involving balancing numbers

Euloge Tchammou, Alain Togbé (2021)

Archivum Mathematicum

Similarity:

In this paper, we find all the solutions of the Diophantine equation B 1 p + 2 B 2 p + + k B k p = B n q in positive integer variables ( k , n ) , where B i is the i t h balancing number if the exponents p , q are included in the set { 1 , 2 } .

Diophantine equations involving factorials

Horst Alzer, Florian Luca (2017)

Mathematica Bohemica

Similarity:

We study the Diophantine equations ( k ! ) n - k n = ( n ! ) k - n k and ( k ! ) n + k n = ( n ! ) k + n k , where k and n are positive integers. We show that the first one holds if and only if k = n or ( k , n ) = ( 1 , 2 ) , ( 2 , 1 ) and that the second one holds if and only if k = n .

Finiteness results for Diophantine triples with repdigit values

Attila Bérczes, Florian Luca, István Pink, Volker Ziegler (2016)

Acta Arithmetica

Similarity:

Let g ≥ 2 be an integer and g be the set of repdigits in base g. Let g be the set of Diophantine triples with values in g ; that is, g is the set of all triples (a,b,c) ∈ ℕ³ with c < b < a such that ab + 1, ac + 1 and bc + 1 lie in the set g . We prove effective finiteness results for the set g .

On the diophantine equation x 2 + 2 a 3 b 73 c = y n

Murat Alan, Mustafa Aydin (2023)

Archivum Mathematicum

Similarity:

In this paper, we find all integer solutions ( x , y , n , a , b , c ) of the equation in the title for non-negative integers a , b and c under the condition that the integers x and y are relatively prime and n 3 . The proof depends on the famous primitive divisor theorem due to Bilu, Hanrot and Voutier and the computational techniques on some elliptic curves.

A note on the article by F. Luca “On the system of Diophantine equations a ² + b ² = ( m ² + 1 ) r and a x + b y = ( m ² + 1 ) z ” (Acta Arith. 153 (2012), 373-392)

Takafumi Miyazaki (2014)

Acta Arithmetica

Similarity:

Let r,m be positive integers with r > 1, m even, and A,B be integers satisfying A + B ( - 1 ) = ( m + ( - 1 ) ) r . We prove that the Diophantine equation | A | x + | B | y = ( m ² + 1 ) z has no positive integer solutions in (x,y,z) other than (x,y,z) = (2,2,r), whenever r > 10 74 or m > 10 34 . Our result is an explicit refinement of a theorem due to F. Luca.

On systems of diophantine equations with a large number of solutions

Jerzy Browkin (2010)

Colloquium Mathematicae

Similarity:

We consider systems of equations of the form x i + x j = x k and x i · x j = x k , which have finitely many integer solutions, proposed by A. Tyszka. For such a system we construct a slightly larger one with much more solutions than the given one.

Lucas sequences and repdigits

Hayder Raheem Hashim, Szabolcs Tengely (2022)

Mathematica Bohemica

Similarity:

Let ( G n ) n 1 be a binary linear recurrence sequence that is represented by the Lucas sequences of the first and second kind, which are { U n } and { V n } , respectively. We show that the Diophantine equation G n = B · ( g l m - 1 ) / ( g l - 1 ) has only finitely many solutions in n , m + , where g 2 , l is even and 1 B g l - 1 . Furthermore, these solutions can be effectively determined by reducing such equation to biquadratic elliptic curves. Then, by a result of Baker (and its best improvement due to Hajdu and Herendi) related to the bounds of the integral...

Integral points on the elliptic curve y 2 = x 3 - 4 p 2 x

Hai Yang, Ruiqin Fu (2019)

Czechoslovak Mathematical Journal

Similarity:

Let p be a fixed odd prime. We combine some properties of quadratic and quartic Diophantine equations with elementary number theory methods to determine all integral points on the elliptic curve E : y 2 = x 3 - 4 p 2 x . Further, let N ( p ) denote the number of pairs of integral points ( x , ± y ) on E with y > 0 . We prove that if p 17 , then N ( p ) 4 or 1 depending on whether p 1 ( mod 8 ) or p - 1 ( mod 8 ) .

On the Diophantine equation ( 2 x - 1 ) ( p y - 1 ) = 2 z 2

Ruizhou Tong (2021)

Czechoslovak Mathematical Journal

Similarity:

Let p be an odd prime. By using the elementary methods we prove that: (1) if 2 x , p ± 3 ( mod 8 ) , the Diophantine equation ( 2 x - 1 ) ( p y - 1 ) = 2 z 2 has no positive integer solution except when p = 3 or p is of the form p = 2 a 0 2 + 1 , where a 0 > 1 is an odd positive integer. (2) if 2 x , 2 y , y 2 , 4 , then the Diophantine equation ( 2 x - 1 ) ( p y - 1 ) = 2 z 2 has no positive integer solution.

A remark on a Diophantine equation of S. S. Pillai

Azizul Hoque (2024)

Czechoslovak Mathematical Journal

Similarity:

S. S. Pillai proved that for a fixed positive integer a , the exponential Diophantine equation x y - y x = a , min ( x , y ) > 1 , has only finitely many solutions in integers x and y . We prove that when a is of the form 2 z 2 , the above equation has no solution in integers x and y with gcd ( x , y ) = 1 .

Complete solution of the Diophantine equation x y + y x = z z

Mihai Cipu (2019)

Czechoslovak Mathematical Journal

Similarity:

The triples ( x , y , z ) = ( 1 , z z - 1 , z ) , ( x , y , z ) = ( z z - 1 , 1 , z ) , where z , satisfy the equation x y + y x = z z . In this paper it is shown that the same equation has no integer solution with min { x , y , z } > 1 , thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.