A Riemann-Roch theorem for dg algebras

François Petit

Bulletin de la Société Mathématique de France (2013)

  • Volume: 141, Issue: 2, page 197-223
  • ISSN: 0037-9484

Abstract

top
Given a smooth proper dg algebra A , a perfect dg A -module M and an endomorphism f of M , we define the Hochschild class of the pair ( M , f ) with values in the Hochschild homology of the algebra A . Our main result is a Riemann-Roch type formula involving the convolution of two such Hochschild classes.

How to cite

top

Petit, François. "A Riemann-Roch theorem for dg algebras." Bulletin de la Société Mathématique de France 141.2 (2013): 197-223. <http://eudml.org/doc/272742>.

@article{Petit2013,
abstract = {Given a smooth proper dg algebra $A$, a perfect dg $A$-module $M$ and an endomorphism $f$ of $M$, we define the Hochschild class of the pair $(M,f)$ with values in the Hochschild homology of the algebra $A$. Our main result is a Riemann-Roch type formula involving the convolution of two such Hochschild classes.},
author = {Petit, François},
journal = {Bulletin de la Société Mathématique de France},
keywords = {differential graded algebra; perfect module; Serre duality; Hochschild homology; Hochschild class; Riemann-Roch theorem},
language = {eng},
number = {2},
pages = {197-223},
publisher = {Société mathématique de France},
title = {A Riemann-Roch theorem for dg algebras},
url = {http://eudml.org/doc/272742},
volume = {141},
year = {2013},
}

TY - JOUR
AU - Petit, François
TI - A Riemann-Roch theorem for dg algebras
JO - Bulletin de la Société Mathématique de France
PY - 2013
PB - Société mathématique de France
VL - 141
IS - 2
SP - 197
EP - 223
AB - Given a smooth proper dg algebra $A$, a perfect dg $A$-module $M$ and an endomorphism $f$ of $M$, we define the Hochschild class of the pair $(M,f)$ with values in the Hochschild homology of the algebra $A$. Our main result is a Riemann-Roch type formula involving the convolution of two such Hochschild classes.
LA - eng
KW - differential graded algebra; perfect module; Serre duality; Hochschild homology; Hochschild class; Riemann-Roch theorem
UR - http://eudml.org/doc/272742
ER -

References

top
  1. [1] M. van den Bergh – « Existence theorems for dualizing complexes over non-commutative graded and filtered rings », J. Algebra195 (1997), p. 662–679. Zbl0894.16020MR1469646
  2. [2] A. I. Bondal & M. Kapranov – « Representable functors, Serre functors, and reconstructions », Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), p. 1183–1205, 1337. MR1039961
  3. [3] A. Căldăraru – « The Mukai pairing, I: the Hochschild structure, arXiv:math/0308079 », ArXiv Mathematics e-prints (2003). 
  4. [4] —, « The Mukai pairing. II. The Hochschild-Kostant-Rosenberg isomorphism », Adv. Math.194 (2005), p. 34–66. Zbl1098.14011MR2141853
  5. [5] A. Căldăraru & S. Willerton – « The Mukai pairing. I. A categorical approach », New York J. Math.16 (2010), p. 61–98. MR2657369
  6. [6] M. Engeli & G. Felder – « A Riemann-Roch-Hirzebruch formula for traces of differential operators », Ann. Sci. Éc. Norm. Supér. 41 (2008), p. 621–653. Zbl1163.32009MR2489635
  7. [7] B. Fresse – Modules over operads and functors, Lecture Notes in Math., vol. 1967, Springer, 2009. MR2494775
  8. [8] V. Ginzburg – « Lectures on Noncommutative Geometry, arXiv:math/0506603 », ArXiv Mathematics e-prints (2005). 
  9. [9] V. Hinich – « Homological algebra of homotopy algebras », Comm. Algebra25 (1997), p. 3291–3323. Zbl0894.18008MR1465117
  10. [10] M. Hovey – Model categories, Mathematical Surveys and Monographs, vol. 63, Amer. Math. Soc., 1999. MR1650134
  11. [11] P. Jørgensen – « Auslander-Reiten theory over topological spaces », Comment. Math. Helv.79 (2004), p. 160–182. Zbl1053.55010MR2031704
  12. [12] M. Kashiwara & P. Schapira – Deformation quantization modules, Astérisque, vol. 345, Soc. Math. France, 2012. MR3012169
  13. [13] B. Keller – « Invariance and localization for cyclic homology of DG algebras », J. Pure Appl. Algebra123 (1998), p. 223–273. Zbl0890.18007MR1492902
  14. [14] —, « On differential graded categories », in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, p. 151–190. MR2275593
  15. [15] M. Kontsevich & Y. Soibelman – « Notes on A -algebras, A -categories and non-commutative geometry », in Homological mirror symmetry, Lecture Notes in Phys., vol. 757, Springer, 2009, p. 153–219. Zbl1202.81120MR2596638
  16. [16] J. L. Loday – Cyclic homology, second éd., Grund. Math. Wiss., vol. 301, Springer, 1998, Appendix E by María O. Ronco, Chapter 13 by the author in collaboration with Teimuraz Pirashvili. MR1600246
  17. [17] N. Markarian – « The Atiyah class, Hochschild cohomology and the Riemann-Roch theorem, arXiv:math/0610553 », ArXiv Mathematics e-prints (2006). MR2472137
  18. [18] D. Murfet – « Residues and duality for singularity categories of isolated Gorenstein singularities, arXiv:0912.1629v2 », ArXiv e-prints (2009). MR3143706
  19. [19] A. Neeman – « The connection between the K -theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel », Ann. Sci. École Norm. Sup.25 (1992), p. 547–566. Zbl0868.19001MR1191736
  20. [20] —, Triangulated categories, Annals of Math. Studies, vol. 148, Princeton Univ. Press, 2001. MR1812507
  21. [21] A. Polishchuk & A. Vaintrob – « Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations, arXiv:1002.2116v2 », ArXiv e-prints (2010). MR2954619
  22. [22] K. Ponto & M. Shulman – « Traces in symmetric monoidal categories, arXiv:1107.6032 », ArXiv e-prints (2011). 
  23. [23] A. C. Ramadoss – « The Mukai pairing and integral transforms in Hochschild homology », Mosc. Math. J. 10 (2010), p. 629–645, 662–663. Zbl1208.14013MR2732577
  24. [24] D. C. Ravenel – « Localization with respect to certain periodic homology theories », Amer. J. Math.106 (1984), p. 351–414. Zbl0586.55003MR737778
  25. [25] D. Shklyarov – « On Serre duality for compact homologically smooth DG algebras, arXiv:math/0702590 », ArXiv Mathematics e-prints (2007). 
  26. [26] D. Shklyarov – « Hirzebruch-Riemann-Roch-type formula for DG algebras », Proceedings of the London Mathematical Society (2012). MR3020737
  27. [27] B. Toën & M. Vaquié – « Moduli of objects in dg-categories », Ann. Sci. École Norm. Sup.40 (2007), p. 387–444. Zbl1140.18005MR2493386

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.