Monodromy and topological classification of germs of holomorphic foliations
David Marín; Jean-François Mattei
Annales scientifiques de l'École Normale Supérieure (2012)
- Volume: 45, Issue: 3, page 405-445
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topMarín, David, and Mattei, Jean-François. "Monodromy and topological classification of germs of holomorphic foliations." Annales scientifiques de l'École Normale Supérieure 45.3 (2012): 405-445. <http://eudml.org/doc/272135>.
@article{Marín2012,
abstract = {We give a complete topological classification of germs of holomorphic foliations in the plane under rather generic conditions. The key point is the introduction of a new topological invariant called monodromy representation. This monodromy contains all the relevant dynamical information, in particular the projective holonomy representations whose topological invariance was conjectured in the eighties by Cerveau and Sad and is proved here under mild hypotheses.},
author = {Marín, David, Mattei, Jean-François},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {differential equations; holomorphic foliations; singularities; monodromy; holonomy},
language = {eng},
number = {3},
pages = {405-445},
publisher = {Société mathématique de France},
title = {Monodromy and topological classification of germs of holomorphic foliations},
url = {http://eudml.org/doc/272135},
volume = {45},
year = {2012},
}
TY - JOUR
AU - Marín, David
AU - Mattei, Jean-François
TI - Monodromy and topological classification of germs of holomorphic foliations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 3
SP - 405
EP - 445
AB - We give a complete topological classification of germs of holomorphic foliations in the plane under rather generic conditions. The key point is the introduction of a new topological invariant called monodromy representation. This monodromy contains all the relevant dynamical information, in particular the projective holonomy representations whose topological invariance was conjectured in the eighties by Cerveau and Sad and is proved here under mild hypotheses.
LA - eng
KW - differential equations; holomorphic foliations; singularities; monodromy; holonomy
UR - http://eudml.org/doc/272135
ER -
References
top- [1] C. Camacho, A. Lins Neto & P. Sad, Topological invariants and equidesingularization for holomorphic vector fields, J. Differential Geom.20 (1984), 143–174. Zbl0576.32020
- [2] C. Camacho & P. Sad, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math.115 (1982), 579–595. Zbl0503.32007MR657239
- [3] D. Cerveau & P. Sad, Problèmes de modules pour les formes différentielles singulières dans le plan complexe, Comment. Math. Helv.61 (1986), 222–253. Zbl0604.58004
- [4] R. Douady & A. Douady, Algèbre et théories galoisiennes, 2nd éd., Cassini, 2005. Zbl1076.12004
- [5] W. Heil, Normalizers of incompressible surfaces in -manifolds, Glas. Mat. Ser. III 16 (36) (1981), 145–150. Zbl0475.57001MR634302
- [6] L. Le Floch, Rigidité générique des feuilletages singuliers, Ann. Sci. École Norm. Sup.31 (1998), 765–785. Zbl0934.32023MR1664226
- [7] F. Loray, Pseudo-groupe d’une singularité de feuilletage holomorphe en dimension deux, preprint http://hal.inria.fr/docs/00/05/37/08/PDF/LeconsLink.pdf, 2005.
- [8] D. Marín, Moduli spaces of germs of holomorphic foliations in the plane, Comment. Math. Helv.78 (2003), 518–539. Zbl1054.32018MR1998392
- [9] D. Marín & J.-F. Mattei, Incompressibilité des feuilles de germes de feuilletages holomorphes singuliers, Ann. Sci. Éc. Norm. Supér. 41 (2008), 855–903. Zbl1207.32028MR2504107
- [10] D. Marín & J.-F. Mattei, Mapping class group of a plane curve germ, Topology Appl.158 (2011), 1271–1295. Zbl1273.32034MR2806361
- [11] D. Marín & J.-F. Mattei, Monodromie et classification topologique de germes de feuilletages holomorphes, preprint arXiv:1004.1552. Zbl1308.32036
- [12] J.-F. Mattei & R. Moussu, Holonomie et intégrales premières, Ann. Sci. École Norm. Sup.13 (1980), 469–523. Zbl0458.32005MR608290
- [13] J. Milnor, Singular points of complex hypersurfaces, Annals of Math. Studies, No. 61, Princeton Univ. Press, 1968. Zbl0184.48405MR239612
- [14] L. Ortiz-Bobadilla, E. Rosales-González & S. M. Voronin, Extended holonomy and topological invariance of vanishing holonomy group, J. Dyn. Control Syst.14 (2008), 299–358. Zbl1203.32012MR2425303
- [15] L. Ortiz-Bobadilla, E. Rosales-Gonzalez & S. M. Voronin, On Camacho-Sad’s theorem about the existence of a separatrix, Internat. J. Math.21 (2010), 1413–1420. Zbl1207.32029MR2747734
- [16] J. C. Rebelo, On transverse rigidity for singular foliations in , Ergodic Theory Dynam. Systems31 (2011), 935–950. Zbl1232.37030MR2794955
- [17] R. Rosas, Constructing equivalences with some extensions to the divisor and topological invariance of projective holonomy, preprint, 2012.
- [18] A. Seidenberg, Reduction of singularities of the differential equation , Amer. J. Math.90 (1968), 248–269. Zbl0159.33303MR220710
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.