Fano manifolds of degree ten and EPW sextics
Annales scientifiques de l'École Normale Supérieure (2011)
- Volume: 44, Issue: 3, page 393-426
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Andreatta & J. A. Wiśniewski, A note on nonvanishing and applications, Duke Math. J.72 (1993), 739–755. Zbl0853.14003MR1253623
- [2] E. Arbarello, M. Cornalba, P. A. Griffiths & J. Harris, Geometry of algebraic curves. Vol. I, Grund. Math. Wiss. 267, Springer, 1985. Zbl0559.14017MR770932
- [3] A. Beauville, Fano threefolds and surfaces, in The Fano Conference, Univ. Torino, Turin, 2004, 175–184. Zbl1096.14034MR2112574
- [4] O. Debarre, A. Iliev & L. Manivel, On the period map for prime Fano threefolds of degree ten, preprint arXiv:0812.3670, to appear in J. Algebraic Geom. Zbl1250.14029MR2846678
- [5] O. Debarre & C. Voisin, Hyper-Kähler fourfolds and Grassmann geometry, J. reine angew. Math. 649 (2010), 63–87. Zbl1217.14028MR2746467
- [6] R. Donagi & E. Markman, Spectral covers, algebraically completely integrable, Hamiltonian systems, and moduli of bundles, in Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math. 1620, Springer, 1996, 1–119. Zbl0853.35100MR1397273
- [7] D. Eisenbud, S. Popescu & C. Walter, Enriques surfaces and other non-Pfaffian subcanonical subschemes of codimension 3, Comm. Algebra28 (2000), 5629–5653. Zbl0983.14018MR1808593
- [8] N. P. Gushelʼ, Fano varieties of genus , Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 1159–1174; English translation: Math. USSR Izv. 21 (1983), 445–459. Zbl0554.14014
- [9] A. Iliev & L. Manivel, Prime Fano threefolds and integrable systems, Math. Ann.339 (2007), 937–955. Zbl1136.14026MR2341908
- [10] A. Iliev & L. Manivel, Cubic hypersurfaces and integrable systems, Amer. J. Math.130 (2008), 1445–1475. Zbl1162.14032MR2464024
- [11] A. Kuznetsov & D. Markushevich, Symplectic structures on moduli spaces of sheaves via the Atiyah class, J. Geom. Phys.59 (2009), 843–860. Zbl1181.14049MR2536849
- [12] D. Logachev, Fano threefolds of genus , preprint arXiv:math/0407147. Zbl1263.14040MR2989233
- [13] D. Markushevich, An integrable system of -Fano flags, Math. Ann.342 (2008), 145–156. Zbl1144.14039MR2415319
- [14] D. Markushevich, Integrable systems from intermediate Jacobians of fivefolds, preprint, 2009. Zbl1296.14032
- [15] S. Mukai, Curves, surfaces and Fano -folds of genus , in Algebraic geometry and commutative algebra, Vol. I, Kinokuniya, 1988, 357–377. Zbl0701.14044MR977768
- [16] S. Mukai, Moduli of vector bundles on surfaces and symplectic manifolds, Sūgaku Expositions1 (1988), 139–174. Zbl0685.14021MR922020
- [17] K. G. O’Grady, Involutions and linear systems on holomorphic symplectic manifolds, Geom. Funct. Anal.15 (2005), 1223–1274. Zbl1093.53081
- [18] K. G. O’Grady, Irreducible symplectic 4-folds and Eisenbud-Popescu-Walter sextics, Duke Math. J.134 (2006), 99–137. Zbl1105.14051
- [19] K. G. O’Grady, Dual double EPW-sextics and their periods, Pure Appl. Math. Q.4 (2008), 427–468. Zbl1152.14010MR2400882
- [20] K. G. O’Grady, Irreducible symplectic 4-folds numerically equivalent to , Commun. Contemp. Math.10 (2008), 553–608. Zbl1216.14040MR2444848
- [21] E. Sernesi, Deformations of algebraic schemes, Grund. Math. Wiss. 334, Springer, 2006. Zbl1102.14001MR2247603