Displaying similar documents to “Fano manifolds of degree ten and EPW sextics”

A vanishing theorem for twisted Alexander polynomials with applications to symplectic 4-manifolds

Stefan Friedl, Stefano Vidussi (2013)

Journal of the European Mathematical Society

Similarity:

In this paper we show that given any 3-manifold N and any non-fibered class in H 1 ( N ; Z ) there exists a representation such that the corresponding twisted Alexander polynomial is zero. We obtain this result by extending earlier work of ours and by combining this with recent results of Agol and Wise on separability of 3-manifold groups. This result allows us to completely classify symplectic 4-manifolds with a free circle action, and to determine their symplectic cones.

Characterization of diffeomorphisms that are symplectomorphisms

Stanisław Janeczko, Zbigniew Jelonek (2009)

Fundamenta Mathematicae

Similarity:

Let ( X , ω X ) and ( Y , ω Y ) be compact symplectic manifolds (resp. symplectic manifolds) of dimension 2n > 2. Fix 0 < s < n (resp. 0 < k ≤ n) and assume that a diffeomorphism Φ : X → Y maps all 2s-dimensional symplectic submanifolds of X to symplectic submanifolds of Y (resp. all isotropic k-dimensional tori of X to isotropic tori of Y). We prove that in both cases Φ is a conformal symplectomorphism, i.e., there is a constant c ≠0 such that Φ * ω Y = c ω X .

𝒞 0 -rigidity of characteristics in symplectic geometry

Emmanuel Opshtein (2009)

Annales scientifiques de l'École Normale Supérieure

Similarity:

The paper concerns a 𝒞 0 -rigidity result for the characteristic foliations in symplectic geometry. A symplectic homeomorphism (in the sense of Eliashberg-Gromov) which preserves a smooth hypersurface also preserves its characteristic foliation.

Submanifold averaging in Riemannian and symplectic geometry

Marco Zambon (2006)

Journal of the European Mathematical Society

Similarity:

We give a canonical construction of an “isotropic average” of given C 1 -close isotropic submanifolds of a symplectic manifold. For this purpose we use an improvement (obtained in collaboration with H. Karcher) of Weinstein’s submanifold averaging theorem and apply “Moser’s trick”. We also present an application to Hamiltonian group actions.

Projective structure, SL ˜ ( 3 , ) and the symplectic Dirac operator

Marie Holíková, Libor Křižka, Petr Somberg (2016)

Archivum Mathematicum

Similarity:

Inspired by the results on symmetries of the symplectic Dirac operator, we realize symplectic spinor fields and the symplectic Dirac operator in the framework of (the double cover of) homogeneous projective structure in two real dimensions. The symmetry group of the homogeneous model of the double cover of projective geometry in two real dimensions is ˜ ( 3 , ) .

On the number of components of the symplectic representatives of the canonical class

Stefano Vidussi (2007)

Journal of the European Mathematical Society

Similarity:

We show that there exists a family of simply connected, symplectic 4-manifolds such that the (Poincaré dual of the) canonical class admits both connected and disconnected symplectic representatives. This answers a question raised by Fintushel and Stern.

Toric structures on near-symplectic 4-manifolds

David T. Gay, Margaret Symington (2009)

Journal of the European Mathematical Society

Similarity:

A near-symplectic structure on a 4-manifold is a closed 2-form that is symplectic away from the 1-dimensional submanifold along which it vanishes and that satisfies a certain transversality condition along this vanishing locus. We investigate near-symplectic 4-manifolds equipped with singular Lagrangian torus fibrations which are locally induced by effective Hamiltonian torus actions. We show how such a structure is completely characterized by a singular integral affine structure on...

Inner and outer hamiltonian capacities

David Hermann (2004)

Bulletin de la Société Mathématique de France

Similarity:

The aim of this paper is to compare two symplectic capacities in n related with periodic orbits of Hamiltonian systems: the Floer-Hofer capacity arising from symplectic homology, and the Viterbo capacity based on generating functions. It is shown here that the inner Floer-Hofer capacity is not larger than the Viterbo capacity and that they are equal for open sets with restricted contact type boundary. As an application, we prove that the Viterbo capacity of any compact Lagrangian submanifold...