Purity of level m stratifications

Marc-Hubert Nicole; Adrian Vasiu; Torsten Wedhorn

Annales scientifiques de l'École Normale Supérieure (2010)

  • Volume: 43, Issue: 6, page 925-955
  • ISSN: 0012-9593

Abstract

top
Let k be a field of characteristic p > 0 . Let D m be a BT m over k (i.e., an m -truncated Barsotti–Tate group over k ). Let S be a k -scheme and let X be a BT m over S . Let S D m ( X ) be the subscheme of S which describes the locus where X is locally for the fppf topology isomorphic to D m . If p 5 , we show that S D m ( X ) is pure in S , i.e. the immersion S D m ( X ) S is affine. For p { 2 , 3 } , we prove purity if D m satisfies a certain technical property depending only on its p -torsion D m [ p ] . For p 5 , we apply the developed techniques to show that all level m stratifications associated to Shimura varieties of Hodge type are pure.

How to cite

top

Nicole, Marc-Hubert, Vasiu, Adrian, and Wedhorn, Torsten. "Purity of level $m$ stratifications." Annales scientifiques de l'École Normale Supérieure 43.6 (2010): 925-955. <http://eudml.org/doc/272165>.

@article{Nicole2010,
abstract = {Let $k$ be a field of characteristic $p&gt;0$. Let $D_m$ be a $\operatorname\{BT\}_m$ over $k$ (i.e., an $m$-truncated Barsotti–Tate group over $k$). Let $S$ be a $k$-scheme and let $X$ be a $\operatorname\{BT\}_m$ over $S$. Let $S_\{D_m\}(X)$ be the subscheme of $S$ which describes the locus where $X$ is locally for the fppf topology isomorphic to $D_m$. If $p\ge 5$, we show that $S_\{D_m\}(X)$ is pure in $S$, i.e. the immersion $S_\{D_m\}(X) \hookrightarrow S$ is affine. For $p\in \lbrace 2,3\rbrace $, we prove purity if $D_m$ satisfies a certain technical property depending only on its $p$-torsion $D_m[p]$. For $p\ge 5$, we apply the developed techniques to show that all level $m$ stratifications associated to Shimura varieties of Hodge type are pure.},
author = {Nicole, Marc-Hubert, Vasiu, Adrian, Wedhorn, Torsten},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {truncated Barsotti–Tate groups; affine schemes; group actions; $F$-crystals; stratifications; purity; and Shimura varieties},
language = {eng},
number = {6},
pages = {925-955},
publisher = {Société mathématique de France},
title = {Purity of level $m$ stratifications},
url = {http://eudml.org/doc/272165},
volume = {43},
year = {2010},
}

TY - JOUR
AU - Nicole, Marc-Hubert
AU - Vasiu, Adrian
AU - Wedhorn, Torsten
TI - Purity of level $m$ stratifications
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 6
SP - 925
EP - 955
AB - Let $k$ be a field of characteristic $p&gt;0$. Let $D_m$ be a $\operatorname{BT}_m$ over $k$ (i.e., an $m$-truncated Barsotti–Tate group over $k$). Let $S$ be a $k$-scheme and let $X$ be a $\operatorname{BT}_m$ over $S$. Let $S_{D_m}(X)$ be the subscheme of $S$ which describes the locus where $X$ is locally for the fppf topology isomorphic to $D_m$. If $p\ge 5$, we show that $S_{D_m}(X)$ is pure in $S$, i.e. the immersion $S_{D_m}(X) \hookrightarrow S$ is affine. For $p\in \lbrace 2,3\rbrace $, we prove purity if $D_m$ satisfies a certain technical property depending only on its $p$-torsion $D_m[p]$. For $p\ge 5$, we apply the developed techniques to show that all level $m$ stratifications associated to Shimura varieties of Hodge type are pure.
LA - eng
KW - truncated Barsotti–Tate groups; affine schemes; group actions; $F$-crystals; stratifications; purity; and Shimura varieties
UR - http://eudml.org/doc/272165
ER -

References

top
  1. [1] S. Bosch, W. Lütkebohmert & M. Raynaud, Néron models, Ergebn. Math. Grenzg. 21, Springer, 1990. Zbl0705.14001
  2. [2] E. Cline, B. Parshall & L. Scott, Induced modules and affine quotients, Math. Ann.230 (1977), 1–14. Zbl0378.20033MR470094
  3. [3] P. Deligne, Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, in Automorphic forms, representations and L -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., 1979, 247–289. Zbl0437.14012MR546620
  4. [4] E. Z. Goren, Hasse invariants for Hilbert modular varieties, Israel J. Math.122 (2001), 157–174. Zbl1066.11018MR1826497
  5. [5] A. Grothendieck, Éléments de Géométrie Algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Publ. Math. I.H.É.S. 8 (1961), 222. Zbl0118.36206
  6. [6] A. Grothendieck, Éléments de Géométrie Algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Publ. Math. I.H.É.S. 24 (1965), 231. Zbl0135.39701
  7. [7] A. Grothendieck & J. Dieudonné, Éléments de Géométrie Algébrique, I. Le langage des schémas, Grundl. der Math. Wiss. 166, Springer, 1971. Zbl0203.23301
  8. [8] G. Harder, Über die Galoiskohomologie halbeinfacher Matrizengruppen. II, Math. Z. 92 (1966), 396–415. Zbl0152.01001MR202918
  9. [9] L. Illusie, Déformations de groupes de Barsotti-Tate (d’après A. Grothendieck), Séminaire sur les pinceaux arithmétiques : la conjecture de Mordell (Paris, 1983/84), Astérisque 127 (1985), 151–198. Zbl1182.14050MR801922
  10. [10] T. Itō, Hasse invariants for some unitary Shimura varieties, in Algebraische Zahlentheorie, Mathematisches Forschungsinstitut Oberwolfach, 2005, 1565–1568. 
  11. [11] A. J. de Jong & F. Oort, Purity of the stratification by Newton polygons, J. Amer. Math. Soc.13 (2000), 209–241. Zbl0954.14007MR1703336
  12. [12] R. E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc.5 (1992), 373–444. Zbl0796.14014MR1124982
  13. [13] H. Kraft, Kommutative algebraische p -Gruppen(mit Anwendungen auf p -divisible Gruppen und abelschen Varietäten), preprint, 86 p., Univ. Bonn, 1975. MR393051
  14. [14] G. Laumon & L. Moret-Bailly, Champs algébriques, Ergebn. Math. Grenzg. 39, Springer, 2000. Zbl0945.14005MR1771927
  15. [15] Y. Manin, The theory of commutative formal groups in finite caracteristic, Russian Math. Surv.18 (1963), 1–83. Zbl0128.15603
  16. [16] B. Moonen, Group schemes with additional structures and Weyl group cosets, in Moduli of abelian varieties (Texel Island, 1999), Progr. Math. 195, Birkhäuser, 2001, 255–298. Zbl1084.14523MR1827024
  17. [17] B. Moonen & T. Wedhorn, Discrete invariants of varieties in positive characteristic, Int. Math. Res. Not.2004 (2004), 3855–3903. Zbl1084.14023MR2104263
  18. [18] D. Mumford, J. Fogarty & F. Kirwan, Geometric invariant theory, third éd., Ergebn. Math. Grenzg. 34, Springer, 1994. Zbl0797.14004MR1304906
  19. [19] F. Oort, Newton polygons and formal groups: conjectures by Manin and Grothendieck, Ann. of Math.152 (2000), 183–206. Zbl0991.14016MR1792294
  20. [20] F. Oort, A stratification of a moduli space of abelian varieties, in Moduli of abelian varieties (Texel Island, 1999), Progr. Math. 195, Birkhäuser, 2001, 345–416. Zbl1052.14047MR1827027
  21. [21] B. Pascal, Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura simples, Invent. Math.177 (2009), 239–280. Zbl1172.14016MR2511742
  22. [22] C. Traverso, p -divisible groups over fields, in Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), Academic Press, 1973, 45–65. Zbl0293.14011MR344262
  23. [23] C. Traverso, Specializations of Barsotti-Tate groups, in Symposia Mathematica, Vol. XXIV (Sympos., INDAM, Rome, 1979), Academic Press, 1981, 1–21. Zbl0466.14016MR619238
  24. [24] A. Vasiu, Crystalline boundedness principle, Ann. Sci. École Norm. Sup.39 (2006), 245–300. Zbl1143.14037MR2245533
  25. [25] A. Vasiu, Level m stratifications of versal deformations of p -divisible groups, J. Algebraic Geom.17 (2008), 599–641. Zbl1152.14022MR2424922
  26. [26] A. Vasiu, Mod p classification of Shimura F -crystals, Math. Nachr.283 (2010), 1068–1113. Zbl1264.11053MR2680723
  27. [27] A. Vasiu, Manin problems for Shimura varieties of Hodge type, preprint, arXiv:math/0209410. Zbl1228.11088MR2789744
  28. [28] T. Wedhorn, The dimension of Oort strata of Shimura varieties of PEL-type, in Moduli of abelian varieties (Texel Island, 1999), Progr. Math. 195, Birkhäuser, 2001, 441–471. Zbl1052.14026MR1827029
  29. [29] T. Zink, On the slope filtration, Duke Math. J.109 (2001), 79–95. Zbl1061.14045MR1844205

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.