Purity of level stratifications

Marc-Hubert Nicole; Adrian Vasiu; Torsten Wedhorn

Annales scientifiques de l'École Normale Supérieure (2010)

  • Volume: 43, Issue: 6, page 925-955
  • ISSN: 0012-9593

Abstract

top
Let be a field of characteristic . Let be a over (i.e., an -truncated Barsotti–Tate group over ). Let be a -scheme and let be a over . Let be the subscheme of which describes the locus where is locally for the fppf topology isomorphic to . If , we show that is pure in , i.e. the immersion is affine. For , we prove purity if satisfies a certain technical property depending only on its -torsion . For , we apply the developed techniques to show that all level stratifications associated to Shimura varieties of Hodge type are pure.

How to cite

top

Nicole, Marc-Hubert, Vasiu, Adrian, and Wedhorn, Torsten. "Purity of level $m$ stratifications." Annales scientifiques de l'École Normale Supérieure 43.6 (2010): 925-955. <http://eudml.org/doc/272165>.

@article{Nicole2010,
abstract = {Let $k$ be a field of characteristic $p&gt;0$. Let $D_m$ be a $\operatorname\{BT\}_m$ over $k$ (i.e., an $m$-truncated Barsotti–Tate group over $k$). Let $S$ be a $k$-scheme and let $X$ be a $\operatorname\{BT\}_m$ over $S$. Let $S_\{D_m\}(X)$ be the subscheme of $S$ which describes the locus where $X$ is locally for the fppf topology isomorphic to $D_m$. If $p\ge 5$, we show that $S_\{D_m\}(X)$ is pure in $S$, i.e. the immersion $S_\{D_m\}(X) \hookrightarrow S$ is affine. For $p\in \lbrace 2,3\rbrace $, we prove purity if $D_m$ satisfies a certain technical property depending only on its $p$-torsion $D_m[p]$. For $p\ge 5$, we apply the developed techniques to show that all level $m$ stratifications associated to Shimura varieties of Hodge type are pure.},
author = {Nicole, Marc-Hubert, Vasiu, Adrian, Wedhorn, Torsten},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {truncated Barsotti–Tate groups; affine schemes; group actions; $F$-crystals; stratifications; purity; and Shimura varieties},
language = {eng},
number = {6},
pages = {925-955},
publisher = {Société mathématique de France},
title = {Purity of level $m$ stratifications},
url = {http://eudml.org/doc/272165},
volume = {43},
year = {2010},
}

TY - JOUR
AU - Nicole, Marc-Hubert
AU - Vasiu, Adrian
AU - Wedhorn, Torsten
TI - Purity of level $m$ stratifications
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 6
SP - 925
EP - 955
AB - Let $k$ be a field of characteristic $p&gt;0$. Let $D_m$ be a $\operatorname{BT}_m$ over $k$ (i.e., an $m$-truncated Barsotti–Tate group over $k$). Let $S$ be a $k$-scheme and let $X$ be a $\operatorname{BT}_m$ over $S$. Let $S_{D_m}(X)$ be the subscheme of $S$ which describes the locus where $X$ is locally for the fppf topology isomorphic to $D_m$. If $p\ge 5$, we show that $S_{D_m}(X)$ is pure in $S$, i.e. the immersion $S_{D_m}(X) \hookrightarrow S$ is affine. For $p\in \lbrace 2,3\rbrace $, we prove purity if $D_m$ satisfies a certain technical property depending only on its $p$-torsion $D_m[p]$. For $p\ge 5$, we apply the developed techniques to show that all level $m$ stratifications associated to Shimura varieties of Hodge type are pure.
LA - eng
KW - truncated Barsotti–Tate groups; affine schemes; group actions; $F$-crystals; stratifications; purity; and Shimura varieties
UR - http://eudml.org/doc/272165
ER -

References

top
  1. [1] S. Bosch, W. Lütkebohmert & M. Raynaud, Néron models, Ergebn. Math. Grenzg. 21, Springer, 1990. Zbl0705.14001
  2. [2] E. Cline, B. Parshall & L. Scott, Induced modules and affine quotients, Math. Ann.230 (1977), 1–14. Zbl0378.20033MR470094
  3. [3] P. Deligne, Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, in Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., 1979, 247–289. Zbl0437.14012MR546620
  4. [4] E. Z. Goren, Hasse invariants for Hilbert modular varieties, Israel J. Math.122 (2001), 157–174. Zbl1066.11018MR1826497
  5. [5] A. Grothendieck, Éléments de Géométrie Algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Publ. Math. I.H.É.S. 8 (1961), 222. Zbl0118.36206
  6. [6] A. Grothendieck, Éléments de Géométrie Algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Publ. Math. I.H.É.S. 24 (1965), 231. Zbl0135.39701
  7. [7] A. Grothendieck & J. Dieudonné, Éléments de Géométrie Algébrique, I. Le langage des schémas, Grundl. der Math. Wiss. 166, Springer, 1971. Zbl0203.23301
  8. [8] G. Harder, Über die Galoiskohomologie halbeinfacher Matrizengruppen. II, Math. Z. 92 (1966), 396–415. Zbl0152.01001MR202918
  9. [9] L. Illusie, Déformations de groupes de Barsotti-Tate (d’après A. Grothendieck), Séminaire sur les pinceaux arithmétiques : la conjecture de Mordell (Paris, 1983/84), Astérisque 127 (1985), 151–198. Zbl1182.14050MR801922
  10. [10] T. Itō, Hasse invariants for some unitary Shimura varieties, in Algebraische Zahlentheorie, Mathematisches Forschungsinstitut Oberwolfach, 2005, 1565–1568. 
  11. [11] A. J. de Jong & F. Oort, Purity of the stratification by Newton polygons, J. Amer. Math. Soc.13 (2000), 209–241. Zbl0954.14007MR1703336
  12. [12] R. E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc.5 (1992), 373–444. Zbl0796.14014MR1124982
  13. [13] H. Kraft, Kommutative algebraische -Gruppen(mit Anwendungen auf -divisible Gruppen und abelschen Varietäten), preprint, 86 p., Univ. Bonn, 1975. MR393051
  14. [14] G. Laumon & L. Moret-Bailly, Champs algébriques, Ergebn. Math. Grenzg. 39, Springer, 2000. Zbl0945.14005MR1771927
  15. [15] Y. Manin, The theory of commutative formal groups in finite caracteristic, Russian Math. Surv.18 (1963), 1–83. Zbl0128.15603
  16. [16] B. Moonen, Group schemes with additional structures and Weyl group cosets, in Moduli of abelian varieties (Texel Island, 1999), Progr. Math. 195, Birkhäuser, 2001, 255–298. Zbl1084.14523MR1827024
  17. [17] B. Moonen & T. Wedhorn, Discrete invariants of varieties in positive characteristic, Int. Math. Res. Not.2004 (2004), 3855–3903. Zbl1084.14023MR2104263
  18. [18] D. Mumford, J. Fogarty & F. Kirwan, Geometric invariant theory, third éd., Ergebn. Math. Grenzg. 34, Springer, 1994. Zbl0797.14004MR1304906
  19. [19] F. Oort, Newton polygons and formal groups: conjectures by Manin and Grothendieck, Ann. of Math.152 (2000), 183–206. Zbl0991.14016MR1792294
  20. [20] F. Oort, A stratification of a moduli space of abelian varieties, in Moduli of abelian varieties (Texel Island, 1999), Progr. Math. 195, Birkhäuser, 2001, 345–416. Zbl1052.14047MR1827027
  21. [21] B. Pascal, Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura simples, Invent. Math.177 (2009), 239–280. Zbl1172.14016MR2511742
  22. [22] C. Traverso, -divisible groups over fields, in Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), Academic Press, 1973, 45–65. Zbl0293.14011MR344262
  23. [23] C. Traverso, Specializations of Barsotti-Tate groups, in Symposia Mathematica, Vol. XXIV (Sympos., INDAM, Rome, 1979), Academic Press, 1981, 1–21. Zbl0466.14016MR619238
  24. [24] A. Vasiu, Crystalline boundedness principle, Ann. Sci. École Norm. Sup.39 (2006), 245–300. Zbl1143.14037MR2245533
  25. [25] A. Vasiu, Level stratifications of versal deformations of -divisible groups, J. Algebraic Geom.17 (2008), 599–641. Zbl1152.14022MR2424922
  26. [26] A. Vasiu, Mod classification of Shimura -crystals, Math. Nachr.283 (2010), 1068–1113. Zbl1264.11053MR2680723
  27. [27] A. Vasiu, Manin problems for Shimura varieties of Hodge type, preprint, arXiv:math/0209410. Zbl1228.11088MR2789744
  28. [28] T. Wedhorn, The dimension of Oort strata of Shimura varieties of PEL-type, in Moduli of abelian varieties (Texel Island, 1999), Progr. Math. 195, Birkhäuser, 2001, 441–471. Zbl1052.14026MR1827029
  29. [29] T. Zink, On the slope filtration, Duke Math. J.109 (2001), 79–95. Zbl1061.14045MR1844205

NotesEmbed ?

top

You must be logged in to post comments.