Elements of large order on varieties over prime finite fields

Mei-Chu Chang[1]; Bryce Kerr[2]; Igor E. Shparlinski[3]; Umberto Zannier[4]

  • [1] Department of Mathematics University of California Riverside, CA 92521, USA
  • [2] Department of Pure Mathematics University of New South Wales Sydney, NSW 2052, Australia
  • [3] Department of Computing Macquarie University Sydney, NSW 2109, Australia
  • [4] Scuola Normale Superiore Piazza dei Cavalieri, 7 56126 Pisa, Italy

Journal de Théorie des Nombres de Bordeaux (2014)

  • Volume: 26, Issue: 3, page 579-593
  • ISSN: 1246-7405

Abstract

top
Let 𝒱 be a fixed algebraic variety defined by m polynomials in n variables with integer coefficients. We show that there exists a constant C ( 𝒱 ) such that for almost all primes p for all but at most C ( 𝒱 ) points on the reduction of 𝒱 modulo p at least one of the components has a large multiplicative order. This generalises several previous results and is a step towards a conjecture of B. Poonen.

How to cite

top

Chang, Mei-Chu, et al. "Elements of large order on varieties over prime finite fields." Journal de Théorie des Nombres de Bordeaux 26.3 (2014): 579-593. <http://eudml.org/doc/275730>.

@article{Chang2014,
abstract = {Let $\{\mathcal\{V\}\}$ be a fixed algebraic variety defined by $m$ polynomials in $n$ variables with integer coefficients. We show that there exists a constant $C(\{\mathcal\{V\}\})$ such that for almost all primes $p$ for all but at most $C(\{\mathcal\{V\}\})$ points on the reduction of $\{\mathcal\{V\}\}$ modulo $p$ at least one of the components has a large multiplicative order. This generalises several previous results and is a step towards a conjecture of B. Poonen.},
affiliation = {Department of Mathematics University of California Riverside, CA 92521, USA; Department of Pure Mathematics University of New South Wales Sydney, NSW 2052, Australia; Department of Computing Macquarie University Sydney, NSW 2109, Australia; Scuola Normale Superiore Piazza dei Cavalieri, 7 56126 Pisa, Italy},
author = {Chang, Mei-Chu, Kerr, Bryce, Shparlinski, Igor E., Zannier, Umberto},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {12},
number = {3},
pages = {579-593},
publisher = {Société Arithmétique de Bordeaux},
title = {Elements of large order on varieties over prime finite fields},
url = {http://eudml.org/doc/275730},
volume = {26},
year = {2014},
}

TY - JOUR
AU - Chang, Mei-Chu
AU - Kerr, Bryce
AU - Shparlinski, Igor E.
AU - Zannier, Umberto
TI - Elements of large order on varieties over prime finite fields
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/12//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 3
SP - 579
EP - 593
AB - Let ${\mathcal{V}}$ be a fixed algebraic variety defined by $m$ polynomials in $n$ variables with integer coefficients. We show that there exists a constant $C({\mathcal{V}})$ such that for almost all primes $p$ for all but at most $C({\mathcal{V}})$ points on the reduction of ${\mathcal{V}}$ modulo $p$ at least one of the components has a large multiplicative order. This generalises several previous results and is a step towards a conjecture of B. Poonen.
LA - eng
UR - http://eudml.org/doc/275730
ER -

References

top
  1. O. Ahmadi, I. E. Shparlinski and J. F. Voloch, Multiplicative order of Gauss periods, Intern. J. Number Theory, 6, (2010), 877–882. Zbl1201.11110MR2661288
  2. I. Aliev and C. J. Smyth, Solving algebraic equations in roots of unity, Forum Math., 24, (2012), 641–665. Zbl1297.11068MR2926639
  3. F. Beukers and C. J. Smyth, Cyclotomic points on curves, Number theory for the millenium (Urbana, Illinois, 2000), I, A.K. Peters, (2002), 67–85. Zbl1029.11009MR1956219
  4. E. Bombieri and W. Gubler, Heights in Diophantine geometry, Cambridge Univ. Press, Cambridge, (2006). Zbl1130.11034MR2216774
  5. J. Bourgain, M. Z.  Garaev, S. V. Konyagin and I. E. Shparlinski, On the hidden shifted power problem, SIAM J. Comp., 41, (2012), 1524–1557. Zbl1311.11111MR3023803
  6. J. F. Burkhart, N. J. Calkin, S. Gao, J. C. Hyde-Volpe, K. James, H. Maharaj, S. Manber, J. Ruiz and E. Smith, Finite field elements of high order arising from modular curve, Designs, Codes and Cryptography, 51, (2009), 301–314. Zbl1196.11159MR2485499
  7. M.-C. Chang, Order of Gauss periods in large characteristic, Taiwanese J. Math., 17, (2013), 621–628. Zbl06249075MR3044526
  8. M.-C. Chang, Elements of large order in prime finite fields, Bull. Aust. Math. Soc, 88, (2013), 169–176. Zbl1300.11017MR3096879
  9. Q. Cheng, S. Gao and D. Wan, Constructing high order elements through subspace polynomials, Proc. 23rd ACM-SIAM Symposium on Discrete Algorithms, SIAM Press, (2012), 1457–1463. MR3205305
  10. D. A. Cox, J. Little and D. O’Shea, Ideals, varieties, and algorithms, Springer-Verlag, (1992). Zbl0756.13017MR1189133
  11. C. D’Andrea, T. Krick and M. Sombra, Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze, Annales Sci. de l’ENS, 46, (2013), 549–627. Zbl06216394MR3098424
  12. P. Erdős and R. Murty, On the order of a ( mod p ) , Proc. 5th Canadian Number Theory Association Conf., Amer. Math. Soc., Providence, RI, (1999), 87–97. Zbl0931.11034
  13. Z. Dvir, J. Kollár and S. Lovett, Variety evasive sets, Comp. Complex., (to appear). Zbl1308.68166MR3274824
  14. K. Ford, The distribution of integers with a divisor in a given interval, Annals Math., 168, (2008), 367–433. Zbl1181.11058MR2434882
  15. J. von zur Gathen and I. E. Shparlinski, Gauss periods in finite fields, Proc. 5th Conference of Finite Fields and their Applications, Augsburg, 1999, Springer-Verlag, Berlin, (2001), 162–177. Zbl1019.11036MR1849087
  16. T. Krick, L. M. Pardo and M. Sombra, Sharp estimates for the arithmetic Nullstellensatz, Duke Math. J., 109, (2001), 521–598. Zbl1010.11035MR1853355
  17. M. Laurent, Équations diophantiennes exponentielles, Invent. Math., 78, (1984), 299–327. Zbl0554.10009MR767195
  18. L. Leroux, Computing the torsion points of a variety defined by lacunary polynomials, Math. Comp., 81, (2012), 1587–1607. Zbl1263.11115MR2904592
  19. R. Popovych, Elements of high order in finite fields of the form 𝔽 q [ x ] / Φ r ( x ) , Finite Fields Appl., 18, (2012), 700–710. Zbl1251.11086MR2928465
  20. R. Popovych, Elements of high order in finite fields of the form 𝔽 q [ x ] / ( x m - a ) , Finite Fields Appl., 19, (2013), 86–92. Zbl1275.11150MR2996762
  21. V. Shoup, Searching for primitive roots in finite fields, Math. Comp., 58, (1992), 369–380. Zbl0747.11060MR1106981
  22. I. E. Shparlinski, On primitive elements in finite fields and on elliptic curves, Matem. Sbornik, 181, (1990), 1196–1206 (in Russian). Zbl0719.11085MR1085150
  23. I. E. Shparlinski, Approximate constructions in finite fields, Proc. 3rd Conf. on Finite Fields and Appl., Glasgow, 1995, London Math. Soc., Lect. Note Series, 233, (1996), 313–332. Zbl0868.11060MR1433156
  24. I. Shparlinski, On the multiplicative orders of γ and γ + γ - 1 over finite fields, Finite Fields Appl., 7, (2001), 327–331. Zbl0998.11072MR1826341
  25. J. F. Voloch, On the order of points on curves over finite fields, Integers, 7, (2007), Article A49, 4 pp. Zbl1136.11042MR2373111
  26. J. F. Voloch, Elements of high order on finite fields from elliptic curves, Bull. Aust. Math. Soc., 81, (2010), 425–429. Zbl1221.11145MR2639857
  27. U. Zannier, Lecture notes on Diophantine analysis, Publ. Scuola Normale Superiore, Pisa, (2009). Zbl1186.11001MR2517762
  28. U. Zannier, Some problems of unlikely intersections in arithmetic and geometry, Priceton Univ. Press, Priceton, (2012). Zbl1246.14003MR2918151

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.