Elements of large order on varieties over prime finite fields
Mei-Chu Chang[1]; Bryce Kerr[2]; Igor E. Shparlinski[3]; Umberto Zannier[4]
- [1] Department of Mathematics University of California Riverside, CA 92521, USA
- [2] Department of Pure Mathematics University of New South Wales Sydney, NSW 2052, Australia
- [3] Department of Computing Macquarie University Sydney, NSW 2109, Australia
- [4] Scuola Normale Superiore Piazza dei Cavalieri, 7 56126 Pisa, Italy
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 3, page 579-593
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topChang, Mei-Chu, et al. "Elements of large order on varieties over prime finite fields." Journal de Théorie des Nombres de Bordeaux 26.3 (2014): 579-593. <http://eudml.org/doc/275730>.
@article{Chang2014,
abstract = {Let $\{\mathcal\{V\}\}$ be a fixed algebraic variety defined by $m$ polynomials in $n$ variables with integer coefficients. We show that there exists a constant $C(\{\mathcal\{V\}\})$ such that for almost all primes $p$ for all but at most $C(\{\mathcal\{V\}\})$ points on the reduction of $\{\mathcal\{V\}\}$ modulo $p$ at least one of the components has a large multiplicative order. This generalises several previous results and is a step towards a conjecture of B. Poonen.},
affiliation = {Department of Mathematics University of California Riverside, CA 92521, USA; Department of Pure Mathematics University of New South Wales Sydney, NSW 2052, Australia; Department of Computing Macquarie University Sydney, NSW 2109, Australia; Scuola Normale Superiore Piazza dei Cavalieri, 7 56126 Pisa, Italy},
author = {Chang, Mei-Chu, Kerr, Bryce, Shparlinski, Igor E., Zannier, Umberto},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {12},
number = {3},
pages = {579-593},
publisher = {Société Arithmétique de Bordeaux},
title = {Elements of large order on varieties over prime finite fields},
url = {http://eudml.org/doc/275730},
volume = {26},
year = {2014},
}
TY - JOUR
AU - Chang, Mei-Chu
AU - Kerr, Bryce
AU - Shparlinski, Igor E.
AU - Zannier, Umberto
TI - Elements of large order on varieties over prime finite fields
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/12//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 3
SP - 579
EP - 593
AB - Let ${\mathcal{V}}$ be a fixed algebraic variety defined by $m$ polynomials in $n$ variables with integer coefficients. We show that there exists a constant $C({\mathcal{V}})$ such that for almost all primes $p$ for all but at most $C({\mathcal{V}})$ points on the reduction of ${\mathcal{V}}$ modulo $p$ at least one of the components has a large multiplicative order. This generalises several previous results and is a step towards a conjecture of B. Poonen.
LA - eng
UR - http://eudml.org/doc/275730
ER -
References
top- O. Ahmadi, I. E. Shparlinski and J. F. Voloch, Multiplicative order of Gauss periods, Intern. J. Number Theory, 6, (2010), 877–882. Zbl1201.11110MR2661288
- I. Aliev and C. J. Smyth, Solving algebraic equations in roots of unity, Forum Math., 24, (2012), 641–665. Zbl1297.11068MR2926639
- F. Beukers and C. J. Smyth, Cyclotomic points on curves, Number theory for the millenium (Urbana, Illinois, 2000), I, A.K. Peters, (2002), 67–85. Zbl1029.11009MR1956219
- E. Bombieri and W. Gubler, Heights in Diophantine geometry, Cambridge Univ. Press, Cambridge, (2006). Zbl1130.11034MR2216774
- J. Bourgain, M. Z. Garaev, S. V. Konyagin and I. E. Shparlinski, On the hidden shifted power problem, SIAM J. Comp., 41, (2012), 1524–1557. Zbl1311.11111MR3023803
- J. F. Burkhart, N. J. Calkin, S. Gao, J. C. Hyde-Volpe, K. James, H. Maharaj, S. Manber, J. Ruiz and E. Smith, Finite field elements of high order arising from modular curve, Designs, Codes and Cryptography, 51, (2009), 301–314. Zbl1196.11159MR2485499
- M.-C. Chang, Order of Gauss periods in large characteristic, Taiwanese J. Math., 17, (2013), 621–628. Zbl06249075MR3044526
- M.-C. Chang, Elements of large order in prime finite fields, Bull. Aust. Math. Soc, 88, (2013), 169–176. Zbl1300.11017MR3096879
- Q. Cheng, S. Gao and D. Wan, Constructing high order elements through subspace polynomials, Proc. 23rd ACM-SIAM Symposium on Discrete Algorithms, SIAM Press, (2012), 1457–1463. MR3205305
- D. A. Cox, J. Little and D. O’Shea, Ideals, varieties, and algorithms, Springer-Verlag, (1992). Zbl0756.13017MR1189133
- C. D’Andrea, T. Krick and M. Sombra, Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze, Annales Sci. de l’ENS, 46, (2013), 549–627. Zbl06216394MR3098424
- P. Erdős and R. Murty, On the order of , Proc. 5th Canadian Number Theory Association Conf., Amer. Math. Soc., Providence, RI, (1999), 87–97. Zbl0931.11034
- Z. Dvir, J. Kollár and S. Lovett, Variety evasive sets, Comp. Complex., (to appear). Zbl1308.68166MR3274824
- K. Ford, The distribution of integers with a divisor in a given interval, Annals Math., 168, (2008), 367–433. Zbl1181.11058MR2434882
- J. von zur Gathen and I. E. Shparlinski, Gauss periods in finite fields, Proc. 5th Conference of Finite Fields and their Applications, Augsburg, 1999, Springer-Verlag, Berlin, (2001), 162–177. Zbl1019.11036MR1849087
- T. Krick, L. M. Pardo and M. Sombra, Sharp estimates for the arithmetic Nullstellensatz, Duke Math. J., 109, (2001), 521–598. Zbl1010.11035MR1853355
- M. Laurent, Équations diophantiennes exponentielles, Invent. Math., 78, (1984), 299–327. Zbl0554.10009MR767195
- L. Leroux, Computing the torsion points of a variety defined by lacunary polynomials, Math. Comp., 81, (2012), 1587–1607. Zbl1263.11115MR2904592
- R. Popovych, Elements of high order in finite fields of the form , Finite Fields Appl., 18, (2012), 700–710. Zbl1251.11086MR2928465
- R. Popovych, Elements of high order in finite fields of the form , Finite Fields Appl., 19, (2013), 86–92. Zbl1275.11150MR2996762
- V. Shoup, Searching for primitive roots in finite fields, Math. Comp., 58, (1992), 369–380. Zbl0747.11060MR1106981
- I. E. Shparlinski, On primitive elements in finite fields and on elliptic curves, Matem. Sbornik, 181, (1990), 1196–1206 (in Russian). Zbl0719.11085MR1085150
- I. E. Shparlinski, Approximate constructions in finite fields, Proc. 3rd Conf. on Finite Fields and Appl., Glasgow, 1995, London Math. Soc., Lect. Note Series, 233, (1996), 313–332. Zbl0868.11060MR1433156
- I. Shparlinski, On the multiplicative orders of and over finite fields, Finite Fields Appl., 7, (2001), 327–331. Zbl0998.11072MR1826341
- J. F. Voloch, On the order of points on curves over finite fields, Integers, 7, (2007), Article A49, 4 pp. Zbl1136.11042MR2373111
- J. F. Voloch, Elements of high order on finite fields from elliptic curves, Bull. Aust. Math. Soc., 81, (2010), 425–429. Zbl1221.11145MR2639857
- U. Zannier, Lecture notes on Diophantine analysis, Publ. Scuola Normale Superiore, Pisa, (2009). Zbl1186.11001MR2517762
- U. Zannier, Some problems of unlikely intersections in arithmetic and geometry, Priceton Univ. Press, Priceton, (2012). Zbl1246.14003MR2918151
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.