Complexes of groups of multiplicative type and unramified Brauer group of homogeneous spaces

Mikhail Borovoi; Cyril Demarche; David Harari

Annales scientifiques de l'École Normale Supérieure (2013)

  • Volume: 46, Issue: 4, page 651-692
  • ISSN: 0012-9593

Abstract

top
We compute by arithmetic methods the unramified Brauer group of homogeneous spaces of linear algebraic groups over various fields. We get formulae in terms of hypercohomology of complexes of groups of multiplicative type.

How to cite

top

Borovoi, Mikhail, Demarche, Cyril, and Harari, David. "Complexes de groupes de type multiplicatif et groupe de Brauer non ramifié des espaces homogènes." Annales scientifiques de l'École Normale Supérieure 46.4 (2013): 651-692. <http://eudml.org/doc/272172>.

@article{Borovoi2013,
abstract = {On calcule par des méthodes arithmétiques le groupe de Brauer non ramifié des espaces homogènes de groupes algébriques linéaires sur différents corps. Les formules obtenues font intervenir l’hypercohomologie de complexes de groupes de type multiplicatif.},
author = {Borovoi, Mikhail, Demarche, Cyril, Harari, David},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Galois cohomology; homogeneous spaces; unramified Brauer group; linear algebraic groups},
language = {fre},
number = {4},
pages = {651-692},
publisher = {Société mathématique de France},
title = {Complexes de groupes de type multiplicatif et groupe de Brauer non ramifié des espaces homogènes},
url = {http://eudml.org/doc/272172},
volume = {46},
year = {2013},
}

TY - JOUR
AU - Borovoi, Mikhail
AU - Demarche, Cyril
AU - Harari, David
TI - Complexes de groupes de type multiplicatif et groupe de Brauer non ramifié des espaces homogènes
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 4
SP - 651
EP - 692
AB - On calcule par des méthodes arithmétiques le groupe de Brauer non ramifié des espaces homogènes de groupes algébriques linéaires sur différents corps. Les formules obtenues font intervenir l’hypercohomologie de complexes de groupes de type multiplicatif.
LA - fre
KW - Galois cohomology; homogeneous spaces; unramified Brauer group; linear algebraic groups
UR - http://eudml.org/doc/272172
ER -

References

top
  1. [1] F. A. Bogomolov, Brauer groups of the fields of invariants of algebraic groups, Mat. Sb. 180 (1989), 279–293 ; traduction anglaise : Math. USSR Sb. 66 (1990), 285–299. MR993459
  2. [2] A. Borel, Linear algebraic groups, 2e éd., Graduate Texts in Math. 126, Springer, 1991. MR1102012
  3. [3] M. V. Borovoi, Abelianization of the second nonabelian Galois cohomology, Duke Math. J.72 (1993), 217–239. Zbl0849.12011MR1242885
  4. [4] M. V. Borovoi, The Brauer-Manin obstructions for homogeneous spaces with connected or abelian stabilizer, J. reine angew. Math. 473 (1996), 181–194. Zbl0844.14020MR1390687
  5. [5] M. V. Borovoi, Abelian Galois cohomology of reductive groups, Mem. Amer. Math. Soc. 132 (1998). Zbl0918.20037MR1401491
  6. [6] M. V. Borovoi, On the unramified Brauer group of a homogeneous space, preprint arXiv:1206.1023. Zbl1303.14030
  7. [7] M. V. Borovoi, J.-L. Colliot-Thélène & A. Skorobogatov, The elementary obstruction and homogeneous spaces, Duke Math. J.141 (2008), 321–364. Zbl1135.14013MR2376817
  8. [8] M. V. Borovoi & C. Demarche, Manin obstruction to strong approximation for homogeneous spaces, Comment. Math. Helv.88 (2013), 1–54. Zbl1271.14073MR3008912
  9. [9] M. V. Borovoi & J. van Hamel, Extended Picard complexes and linear algebraic groups, J. reine angew. Math. 627 (2009), 53–82. Zbl1170.14015MR2494913
  10. [10] M. V. Borovoi & J. van Hamel, Extended equivariant Picard complexes and homogeneous spaces, Transform. Groups17 (2012), 51–86. Zbl1252.14030MR2891211
  11. [11] F. Bruhat & J. Tits, Groupes algébriques sur un corps local. Chapitre III. Compléments et applications à la cohomologie galoisienne, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), 671–698. Zbl0657.20040MR927605
  12. [12] H. Chu, S.-J. Hu, M.-C. Kang & Y. G. Prokhorov, Noether’s problem for groups of order 32, J. Algebra320 (2008), 3022–3035. Zbl1154.14011MR2442008
  13. [13] J.-L. Colliot-Thélène, Birational invariants, purity and the Gersten conjecture, in K -theory and algebraic geometry : connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), Proc. Sympos. Pure Math. 58, Amer. Math. Soc., 1995, 1–64. MR1327280
  14. [14] J.-L. Colliot-Thélène, Résolutions flasques des groupes linéaires connexes, J. reine angew. Math. 618 (2008), 77–133. MR2404747
  15. [15] J.-L. Colliot-Thélène & B. È. Kunyavskiĭ, Groupe de Brauer non ramifié des espaces principaux homogènes de groupes linéaires, J. Ramanujan Math. Soc.13 (1998), 37–49. Zbl0929.14008MR1626696
  16. [16] J.-L. Colliot-Thélène & B. È. Kunyavskiĭ, Groupe de Picard et groupe de Brauer des compactifications lisses d’espaces homogènes, J. Algebraic Geom.15 (2006), 733–752. MR2237268
  17. [17] J.-L. Colliot-Thélène & J.-J. Sansuc, The rationality problem for fields of invariants under linear algebraic groups (with special regards to the Brauer group), in Algebraic groups and homogeneous spaces, Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., 2007, 113–186. Zbl1147.13002MR2348904
  18. [18] J.-L. Colliot-Thélène & F. Xu, Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms, Compositio Math.145 (2009), 309–363. Zbl1190.11036MR2501421
  19. [19] B. Conrad, Deligne’s notes on Nagata compactifications, J. Ramanujan Math. Soc.22 (2007), 205–257. Zbl1142.14001MR2356346
  20. [20] C. Demarche, Méthodes cohomologiques pour l’étude des points rationnels sur les espaces homogènes, thèse de doctorat, Université Paris-Sud, 2009. 
  21. [21] C. Demarche, Groupe de Brauer non ramifié d’espaces homogènes à stabilisateurs finis, Math. Ann.346 (2010), 949–968. Zbl1297.14022MR2587098
  22. [22] C. Demarche, Suites de Poitou-Tate pour les complexes de tores à deux termes, Int. Math. Res. Not.2011 (2011), 135–174. MR2755486
  23. [23] C. Demarche, Une formule pour le groupe de Brauer algébrique d’un torseur, J. Algebra347 (2011), 96–132. Zbl1248.14057MR2846400
  24. [24] C. Demarche, Abélianisation des espaces homogènes et applications arithmétiques, in Torsors, étale homotopy and applications to rational points, LMS Lecture Notes 405, Cambridge Univ. Press, 2013. MR3077169
  25. [25] J.-C. Douai, 2 -cohomologie galoisienne des groupes semi-simples définis sur les corps locaux, C. R. Acad. Sci. Paris280 (1975), 321–323. Zbl0328.20036MR401713
  26. [26] J.-C. Douai, 2 -cohomologie galoisienne des groupes semi-simples, thèse de doctorat, Université de Lille 1, 1976, Éditions universitaires européennes, Sarrebruck, 2010. 
  27. [27] J. Giraud, Cohomologie non abélienne, Grundl. math. Wissens. 179, Springer, 1971. MR344253
  28. [28] C. D. González-Avilés, Quasi-abelian crossed modules and nonabelian cohomology, J. Algebra369 (2012), 235–255. Zbl1292.14016MR2959794
  29. [29] A. Grothendieck, Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957–1962.], Secrétariat mathématique, 1962. Zbl0239.14001MR146040
  30. [30] A. Grothendieck, Le groupe de Brauer, I, II, III, in Dix exposés sur la cohomologie des schémas, North-Holland & Masson, 1968. 
  31. [31] D. Harari, Méthode des fibrations et obstruction de Manin, Duke Math. J.75 (1994), 221–260. Zbl0847.14001MR1284820
  32. [32] D. Harari & A. Skorobogatov, Descent theory for open varieties, in Torsors, étale homotopy and applications to rational points, LMS Lecture Notes 405, Cambridge Univ. Press, 2013. Zbl1290.14014MR3077164
  33. [33] D. Harari & T. Szamuely, Arithmetic duality theorems for 1-motives, J. reine angew. Math. 578 (2005), 93–128. Zbl1088.14012MR2113891
  34. [34] G. Harder, Halbeinfache Gruppenschemata über Dedekindringen, Invent. Math.4 (1967), 165–191. Zbl0158.39502MR225785
  35. [35] R. Hartshorne, Algebraic geometry, Graduate Texts in Math. 52, Springer, 1977. MR463157
  36. [36] L. Illusie, Y. Laszlo & F. Orgogozo, Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents, Séminaire à l’École polytechnique 2006-2008, en préparation. 
  37. [37] M. Kneser, Galois-Kohomologie halbeinfacher algebraischer Gruppen über 𝔭 -adischen Körpern. I, Math. Z. 88 (1965), 40–47 ; II, Math. Z. 89 (1965), 250–272. MR174559
  38. [38] H. Kuniyoshi, On a problem of Chevalley, Nagoya Math. J.8 (1955), 65–67. Zbl0065.02602MR69160
  39. [39] B. Margaux, Vanishing of Hochschild cohomology for affine group schemes and rigidity of homomorphisms between algebraic groups, Doc. Math.14 (2009), 653–672. Zbl1192.20031MR2565900
  40. [40] J. S. Milne, Étale cohomology, Princeton Mathematical Series 33, Princeton Univ. Press, 1980. MR559531
  41. [41] J. S. Milne, Arithmetic duality theorems, 2e éd., BookSurge, LLC, Charleston, SC, 2006. MR2261462
  42. [42] J. Oesterlé, Nombres de Tamagawa et groupes unipotents en caractéristique p , Invent. Math.78 (1984), 13–88. Zbl0542.20024MR762353
  43. [43] M. Rosen, Number theory in function fields, Graduate Texts in Math. 210, Springer, 2002. MR1876657
  44. [44] J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. reine angew. Math. 327 (1981), 12–80. Zbl0468.14007MR631309
  45. [45] J-P. Serre, On the fundamental group of a unirational variety, J. London Math. Soc.34 (1959), 481–484. Zbl0097.36301MR109155
  46. [46] J-P. Serre, Zeta and L functions, in Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), Harper & Row, 1965, 82–92. MR194396
  47. [47] J-P. Serre, Cohomologie galoisienne, 5e éd., Lecture Notes in Math. 5, Springer, 1994. MR1324577
  48. [48] A. Skorobogatov, Torsors and rational points, Cambridge Tracts in Mathematics 144, Cambridge Univ. Press, 2001. Zbl0972.14015MR1845760
  49. [49] T. A. Springer, Nonabelian H 2 in Galois cohomology, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., 1966, 164–182. MR209297
  50. [50] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Math. 38, Cambridge Univ. Press, 1994. MR1269324

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.