Complexes of groups of multiplicative type and unramified Brauer group of homogeneous spaces
Mikhail Borovoi; Cyril Demarche; David Harari
Annales scientifiques de l'École Normale Supérieure (2013)
- Volume: 46, Issue: 4, page 651-692
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topBorovoi, Mikhail, Demarche, Cyril, and Harari, David. "Complexes de groupes de type multiplicatif et groupe de Brauer non ramifié des espaces homogènes." Annales scientifiques de l'École Normale Supérieure 46.4 (2013): 651-692. <http://eudml.org/doc/272172>.
@article{Borovoi2013,
abstract = {On calcule par des méthodes arithmétiques le groupe de Brauer non ramifié des espaces homogènes de groupes algébriques linéaires sur différents corps. Les formules obtenues font intervenir l’hypercohomologie de complexes de groupes de type multiplicatif.},
author = {Borovoi, Mikhail, Demarche, Cyril, Harari, David},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Galois cohomology; homogeneous spaces; unramified Brauer group; linear algebraic groups},
language = {fre},
number = {4},
pages = {651-692},
publisher = {Société mathématique de France},
title = {Complexes de groupes de type multiplicatif et groupe de Brauer non ramifié des espaces homogènes},
url = {http://eudml.org/doc/272172},
volume = {46},
year = {2013},
}
TY - JOUR
AU - Borovoi, Mikhail
AU - Demarche, Cyril
AU - Harari, David
TI - Complexes de groupes de type multiplicatif et groupe de Brauer non ramifié des espaces homogènes
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 4
SP - 651
EP - 692
AB - On calcule par des méthodes arithmétiques le groupe de Brauer non ramifié des espaces homogènes de groupes algébriques linéaires sur différents corps. Les formules obtenues font intervenir l’hypercohomologie de complexes de groupes de type multiplicatif.
LA - fre
KW - Galois cohomology; homogeneous spaces; unramified Brauer group; linear algebraic groups
UR - http://eudml.org/doc/272172
ER -
References
top- [1] F. A. Bogomolov, Brauer groups of the fields of invariants of algebraic groups, Mat. Sb. 180 (1989), 279–293 ; traduction anglaise : Math. USSR Sb. 66 (1990), 285–299. MR993459
- [2] A. Borel, Linear algebraic groups, 2e éd., Graduate Texts in Math. 126, Springer, 1991. MR1102012
- [3] M. V. Borovoi, Abelianization of the second nonabelian Galois cohomology, Duke Math. J.72 (1993), 217–239. Zbl0849.12011MR1242885
- [4] M. V. Borovoi, The Brauer-Manin obstructions for homogeneous spaces with connected or abelian stabilizer, J. reine angew. Math. 473 (1996), 181–194. Zbl0844.14020MR1390687
- [5] M. V. Borovoi, Abelian Galois cohomology of reductive groups, Mem. Amer. Math. Soc. 132 (1998). Zbl0918.20037MR1401491
- [6] M. V. Borovoi, On the unramified Brauer group of a homogeneous space, preprint arXiv:1206.1023. Zbl1303.14030
- [7] M. V. Borovoi, J.-L. Colliot-Thélène & A. Skorobogatov, The elementary obstruction and homogeneous spaces, Duke Math. J.141 (2008), 321–364. Zbl1135.14013MR2376817
- [8] M. V. Borovoi & C. Demarche, Manin obstruction to strong approximation for homogeneous spaces, Comment. Math. Helv.88 (2013), 1–54. Zbl1271.14073MR3008912
- [9] M. V. Borovoi & J. van Hamel, Extended Picard complexes and linear algebraic groups, J. reine angew. Math. 627 (2009), 53–82. Zbl1170.14015MR2494913
- [10] M. V. Borovoi & J. van Hamel, Extended equivariant Picard complexes and homogeneous spaces, Transform. Groups17 (2012), 51–86. Zbl1252.14030MR2891211
- [11] F. Bruhat & J. Tits, Groupes algébriques sur un corps local. Chapitre III. Compléments et applications à la cohomologie galoisienne, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), 671–698. Zbl0657.20040MR927605
- [12] H. Chu, S.-J. Hu, M.-C. Kang & Y. G. Prokhorov, Noether’s problem for groups of order 32, J. Algebra320 (2008), 3022–3035. Zbl1154.14011MR2442008
- [13] J.-L. Colliot-Thélène, Birational invariants, purity and the Gersten conjecture, in -theory and algebraic geometry : connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), Proc. Sympos. Pure Math. 58, Amer. Math. Soc., 1995, 1–64. MR1327280
- [14] J.-L. Colliot-Thélène, Résolutions flasques des groupes linéaires connexes, J. reine angew. Math. 618 (2008), 77–133. MR2404747
- [15] J.-L. Colliot-Thélène & B. È. Kunyavskiĭ, Groupe de Brauer non ramifié des espaces principaux homogènes de groupes linéaires, J. Ramanujan Math. Soc.13 (1998), 37–49. Zbl0929.14008MR1626696
- [16] J.-L. Colliot-Thélène & B. È. Kunyavskiĭ, Groupe de Picard et groupe de Brauer des compactifications lisses d’espaces homogènes, J. Algebraic Geom.15 (2006), 733–752. MR2237268
- [17] J.-L. Colliot-Thélène & J.-J. Sansuc, The rationality problem for fields of invariants under linear algebraic groups (with special regards to the Brauer group), in Algebraic groups and homogeneous spaces, Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., 2007, 113–186. Zbl1147.13002MR2348904
- [18] J.-L. Colliot-Thélène & F. Xu, Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms, Compositio Math.145 (2009), 309–363. Zbl1190.11036MR2501421
- [19] B. Conrad, Deligne’s notes on Nagata compactifications, J. Ramanujan Math. Soc.22 (2007), 205–257. Zbl1142.14001MR2356346
- [20] C. Demarche, Méthodes cohomologiques pour l’étude des points rationnels sur les espaces homogènes, thèse de doctorat, Université Paris-Sud, 2009.
- [21] C. Demarche, Groupe de Brauer non ramifié d’espaces homogènes à stabilisateurs finis, Math. Ann.346 (2010), 949–968. Zbl1297.14022MR2587098
- [22] C. Demarche, Suites de Poitou-Tate pour les complexes de tores à deux termes, Int. Math. Res. Not.2011 (2011), 135–174. MR2755486
- [23] C. Demarche, Une formule pour le groupe de Brauer algébrique d’un torseur, J. Algebra347 (2011), 96–132. Zbl1248.14057MR2846400
- [24] C. Demarche, Abélianisation des espaces homogènes et applications arithmétiques, in Torsors, étale homotopy and applications to rational points, LMS Lecture Notes 405, Cambridge Univ. Press, 2013. MR3077169
- [25] J.-C. Douai, -cohomologie galoisienne des groupes semi-simples définis sur les corps locaux, C. R. Acad. Sci. Paris280 (1975), 321–323. Zbl0328.20036MR401713
- [26] J.-C. Douai, -cohomologie galoisienne des groupes semi-simples, thèse de doctorat, Université de Lille 1, 1976, Éditions universitaires européennes, Sarrebruck, 2010.
- [27] J. Giraud, Cohomologie non abélienne, Grundl. math. Wissens. 179, Springer, 1971. MR344253
- [28] C. D. González-Avilés, Quasi-abelian crossed modules and nonabelian cohomology, J. Algebra369 (2012), 235–255. Zbl1292.14016MR2959794
- [29] A. Grothendieck, Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957–1962.], Secrétariat mathématique, 1962. Zbl0239.14001MR146040
- [30] A. Grothendieck, Le groupe de Brauer, I, II, III, in Dix exposés sur la cohomologie des schémas, North-Holland & Masson, 1968.
- [31] D. Harari, Méthode des fibrations et obstruction de Manin, Duke Math. J.75 (1994), 221–260. Zbl0847.14001MR1284820
- [32] D. Harari & A. Skorobogatov, Descent theory for open varieties, in Torsors, étale homotopy and applications to rational points, LMS Lecture Notes 405, Cambridge Univ. Press, 2013. Zbl1290.14014MR3077164
- [33] D. Harari & T. Szamuely, Arithmetic duality theorems for 1-motives, J. reine angew. Math. 578 (2005), 93–128. Zbl1088.14012MR2113891
- [34] G. Harder, Halbeinfache Gruppenschemata über Dedekindringen, Invent. Math.4 (1967), 165–191. Zbl0158.39502MR225785
- [35] R. Hartshorne, Algebraic geometry, Graduate Texts in Math. 52, Springer, 1977. MR463157
- [36] L. Illusie, Y. Laszlo & F. Orgogozo, Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents, Séminaire à l’École polytechnique 2006-2008, en préparation.
- [37] M. Kneser, Galois-Kohomologie halbeinfacher algebraischer Gruppen über -adischen Körpern. I, Math. Z. 88 (1965), 40–47 ; II, Math. Z. 89 (1965), 250–272. MR174559
- [38] H. Kuniyoshi, On a problem of Chevalley, Nagoya Math. J.8 (1955), 65–67. Zbl0065.02602MR69160
- [39] B. Margaux, Vanishing of Hochschild cohomology for affine group schemes and rigidity of homomorphisms between algebraic groups, Doc. Math.14 (2009), 653–672. Zbl1192.20031MR2565900
- [40] J. S. Milne, Étale cohomology, Princeton Mathematical Series 33, Princeton Univ. Press, 1980. MR559531
- [41] J. S. Milne, Arithmetic duality theorems, 2e éd., BookSurge, LLC, Charleston, SC, 2006. MR2261462
- [42] J. Oesterlé, Nombres de Tamagawa et groupes unipotents en caractéristique , Invent. Math.78 (1984), 13–88. Zbl0542.20024MR762353
- [43] M. Rosen, Number theory in function fields, Graduate Texts in Math. 210, Springer, 2002. MR1876657
- [44] J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. reine angew. Math. 327 (1981), 12–80. Zbl0468.14007MR631309
- [45] J-P. Serre, On the fundamental group of a unirational variety, J. London Math. Soc.34 (1959), 481–484. Zbl0097.36301MR109155
- [46] J-P. Serre, Zeta and functions, in Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), Harper & Row, 1965, 82–92. MR194396
- [47] J-P. Serre, Cohomologie galoisienne, 5e éd., Lecture Notes in Math. 5, Springer, 1994. MR1324577
- [48] A. Skorobogatov, Torsors and rational points, Cambridge Tracts in Mathematics 144, Cambridge Univ. Press, 2001. Zbl0972.14015MR1845760
- [49] T. A. Springer, Nonabelian in Galois cohomology, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., 1966, 164–182. MR209297
- [50] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Math. 38, Cambridge Univ. Press, 1994. MR1269324
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.