Hodge metrics and the curvature of higher direct images

Christophe Mourougane; Shigeharu Takayama

Annales scientifiques de l'École Normale Supérieure (2008)

  • Volume: 41, Issue: 6, page 905-924
  • ISSN: 0012-9593

Abstract

top
Using the harmonic theory developed by Takegoshi for representation of relative cohomology and the framework of computation of curvature of direct image bundles by Berndtsson, we prove that the higher direct images by a smooth morphism of the relative canonical bundle twisted by a semi-positive vector bundle are locally free and semi-positively curved, when endowed with a suitable Hodge type metric.

How to cite

top

Mourougane, Christophe, and Takayama, Shigeharu. "Hodge metrics and the curvature of higher direct images." Annales scientifiques de l'École Normale Supérieure 41.6 (2008): 905-924. <http://eudml.org/doc/272191>.

@article{Mourougane2008,
abstract = {Using the harmonic theory developed by Takegoshi for representation of relative cohomology and the framework of computation of curvature of direct image bundles by Berndtsson, we prove that the higher direct images by a smooth morphism of the relative canonical bundle twisted by a semi-positive vector bundle are locally free and semi-positively curved, when endowed with a suitable Hodge type metric.},
author = {Mourougane, Christophe, Takayama, Shigeharu},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {higher direct images; Hodge metrics; harmonic theory for relative cohomology; Nakano positivity},
language = {eng},
number = {6},
pages = {905-924},
publisher = {Société mathématique de France},
title = {Hodge metrics and the curvature of higher direct images},
url = {http://eudml.org/doc/272191},
volume = {41},
year = {2008},
}

TY - JOUR
AU - Mourougane, Christophe
AU - Takayama, Shigeharu
TI - Hodge metrics and the curvature of higher direct images
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 6
SP - 905
EP - 924
AB - Using the harmonic theory developed by Takegoshi for representation of relative cohomology and the framework of computation of curvature of direct image bundles by Berndtsson, we prove that the higher direct images by a smooth morphism of the relative canonical bundle twisted by a semi-positive vector bundle are locally free and semi-positively curved, when endowed with a suitable Hodge type metric.
LA - eng
KW - higher direct images; Hodge metrics; harmonic theory for relative cohomology; Nakano positivity
UR - http://eudml.org/doc/272191
ER -

References

top
  1. [1] C. Bănică & O. Stănăasila, Algebraic methods in the global theory of complex spaces, Editura Academiei, 1976. Zbl0334.32001MR463470
  2. [2] B. Berndtsson, Curvature of vector bundles associated to holomorphic fibrations, preprint arXiv:math.CV/0511225v2, to appear in Ann. of Math. Zbl1195.32012MR2480611
  3. [3] B. Berndtsson & M. Păun, Bergman kernels and the pseudoeffectivity of relative canonical bundles, Duke Math J.145 (2008), 341–378. Zbl1181.32025MR2449950
  4. [4] I. Enoki, Kawamata-Viehweg vanishing theorem for compact Kähler manifolds, in Einstein metrics and Yang-Mills connections (Sanda, 1990), Lecture Notes in Pure and Appl. Math., 145, Dekker, 1993, 59–68. Zbl0797.53052MR1215279
  5. [5] H. Esnault & E. Viehweg, Lectures on vanishing theorems, DMV Seminar, 20, Birkhäuser, 1992. Zbl0779.14003MR1193913
  6. [6] O. Fujino, Higher direct images of log canonical divisors, J. Differential Geom.66 (2004), 453–479. Zbl1072.14019MR2106473
  7. [7] T. Fujita, On Kähler fiber spaces over curves, J. Math. Soc. Japan30 (1978), 779–794. Zbl0393.14006MR513085
  8. [8] H. Grauert & R. Remmert, Coherent analytic sheaves, Grund. Math. Wiss., 265, Springer, 1984. Zbl0537.32001MR755331
  9. [9] P. A. Griffiths, Periods of integrals on algebraic manifolds. III. Some global differential-geometric properties of the period mapping, Publ. Math. I.H.É.S. 38 (1970), 125–180. Zbl0212.53503MR282990
  10. [10] R. Hartshorne, Algebraic geometry, Graduate Texts in Math., 52, Springer, 1977. Zbl0367.14001MR463157
  11. [11] D. Huybrechts, Complex geometry, Universitext, Springer, 2005. Zbl1055.14001MR2093043
  12. [12] Y. Kawamata, Characterization of abelian varieties, Compositio Math.43 (1981), 253–276. Zbl0471.14022MR622451
  13. [13] Y. Kawamata, Subadjunction of log canonical divisors. II, Amer. J. Math. 120 (1998), 893–899. Zbl0919.14003MR1646046
  14. [14] K. Kodaira, Complex manifolds and deformation of complex structures, Grund. Math. Wiss., 283, Springer, 1986. Zbl0581.32012MR815922
  15. [15] J. Kollár, Higher direct images of dualizing sheaves. I, Ann. of Math. 123 (1986), 11–42. Zbl0598.14015MR825838
  16. [16] J. Kollár, Higher direct images of dualizing sheaves. II, Ann. of Math. 124 (1986), 171–202. Zbl0605.14014MR847955
  17. [17] J. Kollár, Kodaira’s canonical bundle formula and adjunction, in Flips for 3-folds and 4-folds (A. Corti, éd.), 2007. MR2359346
  18. [18] N. Levenberg & H. Yamaguchi, The metric induced by the Robin function, Mem. Amer. Math. Soc. 92 (1991), 156. Zbl0742.31003MR1061928
  19. [19] F. Maitani & H. Yamaguchi, Variation of Bergman metrics on Riemann surfaces, Math. Ann.330 (2004), 477–489. Zbl1077.32006MR2099190
  20. [20] L. Manivel, Un théorème de prolongement L 2 de sections holomorphes d’un fibré hermitien, Math. Z.212 (1993), 107–122. Zbl0789.32015MR1200166
  21. [21] S. Mori, Classification of higher-dimensional varieties, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., 46, Amer. Math. Soc., 1987, 269–331. Zbl0656.14022MR927961
  22. [22] A. Moriwaki, Torsion freeness of higher direct images of canonical bundles, Math. Ann.276 (1987), 385–398. Zbl0589.14016MR875335
  23. [23] C. Mourougane, Images directes de fibrés en droites adjoints, Publ. Res. Inst. Math. Sci.33 (1997), 893–916. Zbl0926.14004MR1614576
  24. [24] C. Mourougane & S. Takayama, Hodge metrics and positivity of direct images, J. reine angew. Math. 606 (2007), 167–178. Zbl1128.14030MR2337646
  25. [25] T. Ohsawa, On the extension of L 2 holomorphic functions. II, Publ. Res. Inst. Math. Sci. 24 (1988), 265–275. Zbl0653.32012MR944862
  26. [26] T. Ohsawa & K. Takegoshi, On the extension of L 2 holomorphic functions, Math. Z.195 (1987), 197–204. Zbl0625.32011MR892051
  27. [27] K. Takegoshi, Higher direct images of canonical sheaves tensorized with semi-positive vector bundles by proper Kähler morphisms, Math. Ann.303 (1995), 389–416. Zbl0843.32018MR1354997
  28. [28] H. Tsuji, Variation of Bergman kernels of adjoint line bundles, preprint arXiv:math.CV/0511342. 
  29. [29] E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, in Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math. 1 (1983), 329–353. Zbl0513.14019MR715656
  30. [30] E. Viehweg, Quasi-projective moduli for polarized manifolds, Ergeb. Math. und ihrer Grenzgebiete, 30, Springer, 1995. Zbl0844.14004MR1368632
  31. [31] C. Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés, 10, Soc. Math. de France, 2002, version anglaise : Hodge Theory and Complex algebraic geometry I and II, Cambridge Studies in advanced Mathematics 76 et 77. Zbl1032.14001MR2744215
  32. [32] H. Yamaguchi, Variations of pseudoconvex domains over n , Michigan Math. J.36 (1989), 415–457. Zbl0692.31004MR1027077

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.