Hodge metrics and the curvature of higher direct images
Christophe Mourougane; Shigeharu Takayama
Annales scientifiques de l'École Normale Supérieure (2008)
- Volume: 41, Issue: 6, page 905-924
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topMourougane, Christophe, and Takayama, Shigeharu. "Hodge metrics and the curvature of higher direct images." Annales scientifiques de l'École Normale Supérieure 41.6 (2008): 905-924. <http://eudml.org/doc/272191>.
@article{Mourougane2008,
abstract = {Using the harmonic theory developed by Takegoshi for representation of relative cohomology and the framework of computation of curvature of direct image bundles by Berndtsson, we prove that the higher direct images by a smooth morphism of the relative canonical bundle twisted by a semi-positive vector bundle are locally free and semi-positively curved, when endowed with a suitable Hodge type metric.},
author = {Mourougane, Christophe, Takayama, Shigeharu},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {higher direct images; Hodge metrics; harmonic theory for relative cohomology; Nakano positivity},
language = {eng},
number = {6},
pages = {905-924},
publisher = {Société mathématique de France},
title = {Hodge metrics and the curvature of higher direct images},
url = {http://eudml.org/doc/272191},
volume = {41},
year = {2008},
}
TY - JOUR
AU - Mourougane, Christophe
AU - Takayama, Shigeharu
TI - Hodge metrics and the curvature of higher direct images
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 6
SP - 905
EP - 924
AB - Using the harmonic theory developed by Takegoshi for representation of relative cohomology and the framework of computation of curvature of direct image bundles by Berndtsson, we prove that the higher direct images by a smooth morphism of the relative canonical bundle twisted by a semi-positive vector bundle are locally free and semi-positively curved, when endowed with a suitable Hodge type metric.
LA - eng
KW - higher direct images; Hodge metrics; harmonic theory for relative cohomology; Nakano positivity
UR - http://eudml.org/doc/272191
ER -
References
top- [1] C. Bănică & O. Stănăasila, Algebraic methods in the global theory of complex spaces, Editura Academiei, 1976. Zbl0334.32001MR463470
- [2] B. Berndtsson, Curvature of vector bundles associated to holomorphic fibrations, preprint arXiv:math.CV/0511225v2, to appear in Ann. of Math. Zbl1195.32012MR2480611
- [3] B. Berndtsson & M. Păun, Bergman kernels and the pseudoeffectivity of relative canonical bundles, Duke Math J.145 (2008), 341–378. Zbl1181.32025MR2449950
- [4] I. Enoki, Kawamata-Viehweg vanishing theorem for compact Kähler manifolds, in Einstein metrics and Yang-Mills connections (Sanda, 1990), Lecture Notes in Pure and Appl. Math., 145, Dekker, 1993, 59–68. Zbl0797.53052MR1215279
- [5] H. Esnault & E. Viehweg, Lectures on vanishing theorems, DMV Seminar, 20, Birkhäuser, 1992. Zbl0779.14003MR1193913
- [6] O. Fujino, Higher direct images of log canonical divisors, J. Differential Geom.66 (2004), 453–479. Zbl1072.14019MR2106473
- [7] T. Fujita, On Kähler fiber spaces over curves, J. Math. Soc. Japan30 (1978), 779–794. Zbl0393.14006MR513085
- [8] H. Grauert & R. Remmert, Coherent analytic sheaves, Grund. Math. Wiss., 265, Springer, 1984. Zbl0537.32001MR755331
- [9] P. A. Griffiths, Periods of integrals on algebraic manifolds. III. Some global differential-geometric properties of the period mapping, Publ. Math. I.H.É.S. 38 (1970), 125–180. Zbl0212.53503MR282990
- [10] R. Hartshorne, Algebraic geometry, Graduate Texts in Math., 52, Springer, 1977. Zbl0367.14001MR463157
- [11] D. Huybrechts, Complex geometry, Universitext, Springer, 2005. Zbl1055.14001MR2093043
- [12] Y. Kawamata, Characterization of abelian varieties, Compositio Math.43 (1981), 253–276. Zbl0471.14022MR622451
- [13] Y. Kawamata, Subadjunction of log canonical divisors. II, Amer. J. Math. 120 (1998), 893–899. Zbl0919.14003MR1646046
- [14] K. Kodaira, Complex manifolds and deformation of complex structures, Grund. Math. Wiss., 283, Springer, 1986. Zbl0581.32012MR815922
- [15] J. Kollár, Higher direct images of dualizing sheaves. I, Ann. of Math. 123 (1986), 11–42. Zbl0598.14015MR825838
- [16] J. Kollár, Higher direct images of dualizing sheaves. II, Ann. of Math. 124 (1986), 171–202. Zbl0605.14014MR847955
- [17] J. Kollár, Kodaira’s canonical bundle formula and adjunction, in Flips for 3-folds and 4-folds (A. Corti, éd.), 2007. MR2359346
- [18] N. Levenberg & H. Yamaguchi, The metric induced by the Robin function, Mem. Amer. Math. Soc. 92 (1991), 156. Zbl0742.31003MR1061928
- [19] F. Maitani & H. Yamaguchi, Variation of Bergman metrics on Riemann surfaces, Math. Ann.330 (2004), 477–489. Zbl1077.32006MR2099190
- [20] L. Manivel, Un théorème de prolongement de sections holomorphes d’un fibré hermitien, Math. Z.212 (1993), 107–122. Zbl0789.32015MR1200166
- [21] S. Mori, Classification of higher-dimensional varieties, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., 46, Amer. Math. Soc., 1987, 269–331. Zbl0656.14022MR927961
- [22] A. Moriwaki, Torsion freeness of higher direct images of canonical bundles, Math. Ann.276 (1987), 385–398. Zbl0589.14016MR875335
- [23] C. Mourougane, Images directes de fibrés en droites adjoints, Publ. Res. Inst. Math. Sci.33 (1997), 893–916. Zbl0926.14004MR1614576
- [24] C. Mourougane & S. Takayama, Hodge metrics and positivity of direct images, J. reine angew. Math. 606 (2007), 167–178. Zbl1128.14030MR2337646
- [25] T. Ohsawa, On the extension of holomorphic functions. II, Publ. Res. Inst. Math. Sci. 24 (1988), 265–275. Zbl0653.32012MR944862
- [26] T. Ohsawa & K. Takegoshi, On the extension of holomorphic functions, Math. Z.195 (1987), 197–204. Zbl0625.32011MR892051
- [27] K. Takegoshi, Higher direct images of canonical sheaves tensorized with semi-positive vector bundles by proper Kähler morphisms, Math. Ann.303 (1995), 389–416. Zbl0843.32018MR1354997
- [28] H. Tsuji, Variation of Bergman kernels of adjoint line bundles, preprint arXiv:math.CV/0511342.
- [29] E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, in Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math. 1 (1983), 329–353. Zbl0513.14019MR715656
- [30] E. Viehweg, Quasi-projective moduli for polarized manifolds, Ergeb. Math. und ihrer Grenzgebiete, 30, Springer, 1995. Zbl0844.14004MR1368632
- [31] C. Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés, 10, Soc. Math. de France, 2002, version anglaise : Hodge Theory and Complex algebraic geometry I and II, Cambridge Studies in advanced Mathematics 76 et 77. Zbl1032.14001MR2744215
- [32] H. Yamaguchi, Variations of pseudoconvex domains over , Michigan Math. J.36 (1989), 415–457. Zbl0692.31004MR1027077
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.