Diagonalization and rationalization of algebraic Laurent series
Boris Adamczewski; Jason P. Bell
Annales scientifiques de l'École Normale Supérieure (2013)
- Volume: 46, Issue: 6, page 963-1004
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topAdamczewski, Boris, and Bell, Jason P.. "Diagonalization and rationalization of algebraic Laurent series." Annales scientifiques de l'École Normale Supérieure 46.6 (2013): 963-1004. <http://eudml.org/doc/272194>.
@article{Adamczewski2013,
abstract = {We prove a quantitative version of a result of Furstenberg [20] and Deligne [14] stating that the diagonal of a multivariate algebraic power series with coefficients in a field of positive characteristic is algebraic. As a consequence, we obtain that for every prime $p$ the reduction modulo $p$ of the diagonal of a multivariate algebraic power series $f$ with integer coefficients is an algebraic power series of degree at most $p^\{A\}$ and height at most $Ap^\{A\}$, where $A$ is an effective constant that only depends on the number of variables, the degree of $f$ and the height of $f$. This answers a question raised by Deligne [14].},
author = {Adamczewski, Boris, Bell, Jason P.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {diagonals of algebraic functions; formal power series; multivariate Laurent series; G-functions; reduction modulo $p$},
language = {eng},
number = {6},
pages = {963-1004},
publisher = {Société mathématique de France},
title = {Diagonalization and rationalization of algebraic Laurent series},
url = {http://eudml.org/doc/272194},
volume = {46},
year = {2013},
}
TY - JOUR
AU - Adamczewski, Boris
AU - Bell, Jason P.
TI - Diagonalization and rationalization of algebraic Laurent series
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 6
SP - 963
EP - 1004
AB - We prove a quantitative version of a result of Furstenberg [20] and Deligne [14] stating that the diagonal of a multivariate algebraic power series with coefficients in a field of positive characteristic is algebraic. As a consequence, we obtain that for every prime $p$ the reduction modulo $p$ of the diagonal of a multivariate algebraic power series $f$ with integer coefficients is an algebraic power series of degree at most $p^{A}$ and height at most $Ap^{A}$, where $A$ is an effective constant that only depends on the number of variables, the degree of $f$ and the height of $f$. This answers a question raised by Deligne [14].
LA - eng
KW - diagonals of algebraic functions; formal power series; multivariate Laurent series; G-functions; reduction modulo $p$
UR - http://eudml.org/doc/272194
ER -
References
top- [1] B. Adamczewski & J. P. Bell, On vanishing coefficients of algebraic power series over fields of positive characteristic, Invent. Math.187 (2012), 343–393. Zbl1257.11027MR2885622
- [2] J.-P. Allouche, Transcendence of formal power series with rational coefficients, Theoret. Comput. Sci.218 (1999), 143–160. Zbl0916.68123MR1687784
- [3] J.-P. Allouche, D. Gouyou-Beauchamps & G. Skordev, Transcendence of binomial and Lucas’ formal power series, J. Algebra210 (1998), 577–592. Zbl0980.11030MR1662292
- [4] Y. André, -functions and geometry, Aspects of Mathematics, E13, Friedr. Vieweg & Sohn, 1989. MR990016
- [5] F. Beukers, Congruence properties of coefficients of solutions of Picard-Fuchs equations, Groupe de travail d’analyse ultramétrique 14 (1986–1987), 1–6.
- [6] F. Beukers & C. A. M. Peters, A family of surfaces and , J. reine angew. Math. 351 (1984), 42–54. Zbl0541.14007MR749676
- [7] R. H. Cameron & W. T. Martin, Analytic continuation of diagonals and Hadamard compositions of multiple power series, Trans. Amer. Math. Soc.44 (1938), 1–7. Zbl0019.07102MR1501956
- [8] G. Christol, Diagonales de fractions rationnelles et équations différentielles, Groupe de travail d’analyse ultramétrique 10 (1982–1983), 1–10.
- [9] G. Christol, Diagonales de fractions rationnelles et équations de Picard-Fuchs, Groupe de travail d’analyse ultramétrique 12 (1984–1985), 1–12. MR848993
- [10] G. Christol, Diagonales de fractions rationnelles, in Séminaire de Théorie des Nombres, Paris 1986–87, Progr. Math. 75, Birkhäuser, 1988, 65–90. MR990506
- [11] G. Christol, Globally bounded solutions of differential equations, in Analytic number theory (Tokyo, 1988), Lecture Notes in Math. 1434, Springer, 1990, 45–64. MR1071744
- [12] G. Christol, T. Kamae, M. Mendès France & G. Rauzy, Suites algébriques, automates et substitutions, Bull. Soc. Math. France108 (1980), 401–419. Zbl0472.10035MR614317
- [13] E. Delaygue, Arithmetic properties of Apéry-like numbers, preprint arXiv:1310.4131. Zbl1297.11072
- [14] P. Deligne, Intégration sur un cycle évanescent, Invent. Math.76 (1984), 129–143. Zbl0538.13007
- [15] J. Denef & L. Lipshitz, Algebraic power series and diagonals, J. Number Theory26 (1987), 46–67. Zbl0609.12020MR883533
- [16] B. Dwork, G. Gerotto & F. J. Sullivan, An introduction to -functions, Annals of Math. Studies 133, Princeton Univ. Press, 1994. Zbl0830.12004MR1274045
- [17] D. Eisenbud, Commutative algebra, Graduate Texts in Math. 150, Springer, 1995. MR1322960
- [18] S. Fischler, Irrationalité de valeurs de zêta (d’après Apéry, Rivoal, ...), Séminaire Bourbaki, vol. 2002/03, exp. no 910, Astérisque 294 (2004), 27–62. Zbl1101.11024MR2111638
- [19] P. Flajolet, Analytic models and ambiguity of context-free languages, Theoret. Comput. Sci.49 (1987), 283–309. Zbl0612.68069MR909335
- [20] H. Furstenberg, Algebraic functions over finite fields, J. Algebra7 (1967), 271–277. Zbl0175.03903MR215820
- [21] T. Harase, Algebraic elements in formal power series rings, Israel J. Math.63 (1988), 281–288. Zbl0675.13015MR969943
- [22] M. Kontsevich & D. Zagier, Periods, in Mathematics unlimited—2001 and beyond, Springer, 2001, 771–808. MR1852188
- [23] L. Lipshitz, The diagonal of a -finite power series is -finite, J. Algebra113 (1988), 373–378. Zbl0657.13024MR929767
- [24] L. Lipshitz & A. J. van der Poorten, Rational functions, diagonals, automata and arithmetic, in Number theory (Banff, AB, 1988), de Gruyter, 1990, 339–358. MR1106672
- [25] P. Roquette, Einheiten und Divisorklassen in endlich erzeugbaren Körpern, Jber. Deutsch. Math. Verein60 (1957), 1–21. Zbl0079.26901MR104652
- [26] O. Salon, Suites automatiques à multi-indices, Séminaire de Théorie des Nombres de Bordeaux (1986–1987), exposé 4, 1–27. MR1050262
- [27] A. Sathaye, Generalized Newton-Puiseux expansion and Abhyankar-Moh semigroup theorem, Invent. Math.74 (1983), 149–157. Zbl0549.14001MR722730
- [28] H. Sharif & C. F. Woodcock, Algebraic functions over a field of positive characteristic and Hadamard products, J. London Math. Soc.37 (1988), 395–403. Zbl0612.12018MR939116
- [29] R. P. Stanley, Generating functions, in Studies in combinatorics, MAA Stud. Math. 17, Math. Assoc. America, 1978, 100–141. MR513004
- [30] R. P. Stanley, Differentiably finite power series, European J. Combin.1 (1980), 175–188. Zbl0445.05012MR587530
- [31] R. P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Math. 62, Cambridge Univ. Press, 1999. Zbl0928.05001MR1676282
- [32] M. Waldschmidt, Transcendence of periods: the state of the art, Pure Appl. Math. Q.2 (2006), 435–463. Zbl1220.11090MR2251476
- [33] M. Waldschmidt, Elliptic functions and transcendence, in Surveys in number theory, Dev. Math. 17, Springer, 2008, 143–188. MR2462949
- [34] C. F. Woodcock & H. Sharif, On the transcendence of certain series, J. Algebra121 (1989), 364–369. Zbl0689.13014MR992771
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.