Algebraic integers as values of elliptic functions
We present asymptotic representations for certain reciprocal sums of Fibonacci numbers and of Lucas numbers as a parameter tends to a critical value. As limiting cases of our results, we obtain Euler’s formulas for values of zeta functions.
We prove a quantitative version of a result of Furstenberg [20] and Deligne [14] stating that the diagonal of a multivariate algebraic power series with coefficients in a field of positive characteristic is algebraic. As a consequence, we obtain that for every prime the reduction modulo of the diagonal of a multivariate algebraic power series with integer coefficients is an algebraic power series of degree at most and height at most , where is an effective constant that only depends on...
Nous obtenons une minoration d’une forme linéaire de logarithmes elliptiques de points algébriques d’une courbe elliptique à multiplication complexe définie sur . Cette minoration est optimale (à constante près) en la hauteur de la forme linéaire considérée.