On a conjecture of Kottwitz at the boundary

Benoît Stroh

Annales scientifiques de l'École Normale Supérieure (2012)

  • Volume: 45, Issue: 1, page 143-165
  • ISSN: 0012-9593

Abstract

top
We are interested in the intersection cohomology of the minimal compactification of Siegel modular varieties at some places of bad reduction. We compute the semi-simple trace of the Frobenius morphism on the fibers of the nearby cycles of the intersection complex. We obtain a common generalization of results of Morel, Haines and Ngô.

How to cite

top

Stroh, Benoît. "Sur une conjecture de Kottwitz au bord." Annales scientifiques de l'École Normale Supérieure 45.1 (2012): 143-165. <http://eudml.org/doc/272196>.

@article{Stroh2012,
abstract = {Nous nous intéressons à la cohomologie d’intersection de la compactification minimale des variétés de Siegel à certaines places de mauvaise réduction. Nous calculons la trace semi-simple du morphisme de Frobenius sur les fibres des cycles proches du complexe d’intersection. Nous obtenons une généralisation commune de résultats de Morel et de Haines et Ngô.},
author = {Stroh, Benoît},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Shimura variety; Siegel variety; bad reduction; semi-simple L function; intersection complex},
language = {fre},
number = {1},
pages = {143-165},
publisher = {Société mathématique de France},
title = {Sur une conjecture de Kottwitz au bord},
url = {http://eudml.org/doc/272196},
volume = {45},
year = {2012},
}

TY - JOUR
AU - Stroh, Benoît
TI - Sur une conjecture de Kottwitz au bord
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 1
SP - 143
EP - 165
AB - Nous nous intéressons à la cohomologie d’intersection de la compactification minimale des variétés de Siegel à certaines places de mauvaise réduction. Nous calculons la trace semi-simple du morphisme de Frobenius sur les fibres des cycles proches du complexe d’intersection. Nous obtenons une généralisation commune de résultats de Morel et de Haines et Ngô.
LA - fre
KW - Shimura variety; Siegel variety; bad reduction; semi-simple L function; intersection complex
UR - http://eudml.org/doc/272196
ER -

References

top
  1. [1] A. A. Beĭlinson, On the derived category of perverse sheaves, in K -theory, arithmetic and geometry (Moscow,1984–1986), Lecture Notes in Math. 1289, Springer, 1987, 27–41. Zbl0652.14008
  2. [2] A. A. Beĭlinson, J. Bernstein & P. Deligne, Faisceaux pervers, in Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque 100, Soc. Math. France, 1982, 5–171. Zbl0536.14011
  3. [3] G. Faltings & C.-L. Chai, Degeneration of abelian varieties, Ergebnisse Math. Grenzg. (3) 22, Springer, 1990. Zbl0744.14031
  4. [4] A. Genestier & J. Tilouine, Systèmes de Taylor-Wiles pour GSp 4 , Astérisque302 (2005), 177–290. Zbl1142.11036
  5. [5] U. Görtz & T. J. Haines, The Jordan-Hölder series for nearby cycles on some Shimura varieties and affine flag varieties, J. reine angew. Math. 609 (2007), 161–213. Zbl1157.14013MR2350783
  6. [6] T. J. Haines, Introduction to Shimura varieties with bad reduction of parahoric type, in Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc. 4, Amer. Math. Soc., 2005, 583–642. Zbl1148.11028MR2192017
  7. [7] T. J. Haines & B. C. Ngô, Nearby cycles for local models of some Shimura varieties, Compositio Math.133 (2002), 117–150. Zbl1009.11042MR1923579
  8. [8] L. Illusie, Autour du théorème de monodromie locale, Astérisque223 (1994), 9–57. Zbl0837.14013MR1293970
  9. [9] R. E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc.5 (1992), 373–444. Zbl0796.14014MR1124982
  10. [10] R. E. Kottwitz & M. Rapoport, Minuscule alcoves for GL n and G Sp 2 n , Manuscripta Math.102 (2000), 403–428. Zbl0981.17003MR1785323
  11. [11] K.-W. Lan, Arithmetic compactifications of PEL-type Shimura varieties, Thèse, Harvard University, 2008. Zbl1284.14004MR2711676
  12. [12] S. Morel, Complexes d’intersection des compactifications de Baily-Borel. Le cas des groupes unitaires sur , thèse de doctorat, Université d’Orsay, 2005. 
  13. [13] S. Morel, Complexes pondérés sur les compactifications de Baily-Borel : le cas des variétés de Siegel, J. Amer. Math. Soc.21 (2008), 23–61. Zbl1225.11073MR2350050
  14. [14] S. Morel, On the cohomology of certain noncompact Shimura varieties, Annals of Math. Studies 173, Princeton Univ. Press, 2010. Zbl1233.11069MR2567740
  15. [15] S. Morel, Cohomologie d’intersection des variétés modulaires de Siegel, suite, à paraître dans Compositio Math. Zbl1248.11042
  16. [16] B. C. Ngô & A. Genestier, Alcôves et p -rang des variétés abéliennes, Ann. Inst. Fourier (Grenoble) 52 (2002), 1665–1680. Zbl1046.14023MR1952527
  17. [17] R. Pink, On l -adic sheaves on Shimura varieties and their higher direct images in the Baily-Borel compactification, Math. Ann.292 (1992), 197–240. Zbl0748.14008MR1149032
  18. [18] M. Rapoport, On the bad reduction of Shimura varieties, in Automorphic forms, Shimura varieties, and L -functions, Vol. II (Ann Arbor, MI, 1988), Perspect. Math. 11, Academic Press, 1990, 253–321. Zbl0716.14010MR1044832
  19. [19] J-P. Serre, Zeta and L functions, in Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), Harper & Row, 1965, 82–92. Zbl0171.19602MR194396
  20. [20] B. Stroh, Compactification de variétés de Siegel aux places de mauvaise réduction, Bull. Soc. Math. France138 (2010), 259–315. Zbl1203.14048MR2679041
  21. [21] B. Stroh, Compactification minimale et mauvaise réduction, Ann. Inst. Fourier (Grenoble) 60 (2010), 1035–1055. Zbl1220.14028MR2680823

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.