Duality of Schramm-Loewner evolutions

Julien Dubédat

Annales scientifiques de l'École Normale Supérieure (2009)

  • Volume: 42, Issue: 5, page 697-724
  • ISSN: 0012-9593

Abstract

top
In this note, we prove a version of the conjectured duality for Schramm-Loewner Evolutions, by establishing exact identities in distribution between some boundary arcs of chordal SLE κ , κ > 4 , and appropriate versions of SLE κ ^ , κ ^ = 16 / κ .

How to cite

top

Dubédat, Julien. "Duality of Schramm-Loewner evolutions." Annales scientifiques de l'École Normale Supérieure 42.5 (2009): 697-724. <http://eudml.org/doc/272203>.

@article{Dubédat2009,
abstract = {In this note, we prove a version of the conjectured duality for Schramm-Loewner Evolutions, by establishing exact identities in distribution between some boundary arcs of chordal $\mathrm \{SLE\}_\kappa $, $\kappa &gt;4$, and appropriate versions of $\mathrm \{SLE\}_\{\hat\{\kappa \}\}$, $\hat\{\kappa \}=16/\kappa $.},
author = {Dubédat, Julien},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Schramm-Loewner evolution; duality; partition function},
language = {eng},
number = {5},
pages = {697-724},
publisher = {Société mathématique de France},
title = {Duality of Schramm-Loewner evolutions},
url = {http://eudml.org/doc/272203},
volume = {42},
year = {2009},
}

TY - JOUR
AU - Dubédat, Julien
TI - Duality of Schramm-Loewner evolutions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 5
SP - 697
EP - 724
AB - In this note, we prove a version of the conjectured duality for Schramm-Loewner Evolutions, by establishing exact identities in distribution between some boundary arcs of chordal $\mathrm {SLE}_\kappa $, $\kappa &gt;4$, and appropriate versions of $\mathrm {SLE}_{\hat{\kappa }}$, $\hat{\kappa }=16/\kappa $.
LA - eng
KW - Schramm-Loewner evolution; duality; partition function
UR - http://eudml.org/doc/272203
ER -

References

top
  1. [1] J. Dubédat, SLE ( κ , ρ ) martingales and duality, Ann. Probab.33 (2005), 223–243. Zbl1096.60037MR2118865
  2. [2] J. Dubédat, Euler integrals for commuting SLEs, Journal Statist. Phys.123 (2006), 1183–1218. Zbl1113.82064MR2253875
  3. [3] J. Dubédat, Commutation relations for SLE, Comm. Pure Applied Math.60 (2007), 1792–1847. Zbl1137.82009MR2358649
  4. [4] J. Dubédat, SLE and the free field: Partition functions and couplings, J. Amer. Math. Soc.22 (2009), 995–1054. Zbl1204.60079MR2525778
  5. [5] M. J. Kozdron & G. F. Lawler, The configurational measure on mutually avoiding SLE paths, in Universality and renormalization, Fields Inst. Commun. 50, Amer. Math. Soc., 2007, 199–224. Zbl1133.60023MR2310306
  6. [6] G. Lawler, O. Schramm & W. Werner, Conformal restriction: the chordal case, J. Amer. Math. Soc.16 (2003), 917–955. Zbl1030.60096MR1992830
  7. [7] G. F. Lawler, Conformally invariant processes in the plane, Mathematical Surveys and Monographs 114, Amer. Math. Soc., 2005. Zbl1074.60002MR2129588
  8. [8] G. F. Lawler, O. Schramm & W. Werner, Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab.32 (2004), 939–995. Zbl1126.82011MR2044671
  9. [9] G. F. Lawler & W. Werner, The Brownian loop soup, Probab. Theory Related Fields128 (2004), 565–588. Zbl1049.60072MR2045953
  10. [10] C. Pommerenke, Boundary behaviour of conformal maps, Grund. Math. Wiss. 299, Springer, 1992. Zbl0762.30001MR1217706
  11. [11] D. Revuz & M. Yor, Continuous martingales and Brownian motion, third éd., Grund. Math. Wiss. 293, Springer, 1999. Zbl0917.60006MR1725357
  12. [12] S. Rohde & O. Schramm, Basic properties of SLE, Ann. of Math.161 (2005), 883–924. Zbl1081.60069MR2153402
  13. [13] O. Schramm & S. Sheffield, Contour lines of the two-dimensional discrete Gaussian free field, Acta Math.202 (2009), 21–137. Zbl1210.60051MR2486487
  14. [14] O. Schramm & D. B. Wilson, SLE coordinate changes, New York J. Math.11 (2005), 659–669. Zbl1094.82007MR2188260
  15. [15] W. Werner, Girsanov’s transformation for SLE ( κ , ρ ) processes, intersection exponents and hiding exponents, Ann. Fac. Sci. Toulouse Math.13 (2004), 121–147. Zbl1059.60099MR2060031
  16. [16] W. Werner, Random planar curves and Schramm-Loewner evolutions, in Lectures on probability theory and statistics, Lecture Notes in Math. 1840, Springer, 2004, 107–195. Zbl1057.60078MR2079672
  17. [17] D. Zhan, Duality of chordal SLE, Invent. Math.174 (2008), 309–353. Zbl1158.60047MR2439609
  18. [18] D. Zhan, Reversibility of chordal SLE, Ann. Probab.36 (2008), 1472–1494. Zbl1157.60051MR2435856

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.