Rational invariant tori, phase space tunneling, and spectra for non-selfadjoint operators in dimension
Michael Hitrik; Johannes Sjöstrand
Annales scientifiques de l'École Normale Supérieure (2008)
- Volume: 41, Issue: 4, page 513-573
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topHitrik, Michael, and Sjöstrand, Johannes. "Rational invariant tori, phase space tunneling, and spectra for non-selfadjoint operators in dimension $2$." Annales scientifiques de l'École Normale Supérieure 41.4 (2008): 513-573. <http://eudml.org/doc/272212>.
@article{Hitrik2008,
abstract = {We study spectral asymptotics and resolvent bounds for non-selfadjoint perturbations of selfadjoint $h$-pseudodifferential operators in dimension 2, assuming that the classical flow of the unperturbed part is completely integrable. Spectral contributions coming from rational invariant Lagrangian tori are analyzed. Estimating the tunnel effect between strongly irrational (Diophantine) and rational tori, we obtain an accurate description of the spectrum in a suitable complex window, provided that the strength of the non-selfadjoint perturbation $\gg h$ (or sometimes $\gg h^2$) is not too large.},
author = {Hitrik, Michael, Sjöstrand, Johannes},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {non-selfadjoint; eigenvalue; spectral asymptotics; resolvent; lagrangian; rational torus; diophantine torus; completely integrable; relative determinant; secular perturbation theory; phase space; tunnel effect; pseudodifferential operators; non-selfadjoint perturbations},
language = {eng},
number = {4},
pages = {513-573},
publisher = {Société mathématique de France},
title = {Rational invariant tori, phase space tunneling, and spectra for non-selfadjoint operators in dimension $2$},
url = {http://eudml.org/doc/272212},
volume = {41},
year = {2008},
}
TY - JOUR
AU - Hitrik, Michael
AU - Sjöstrand, Johannes
TI - Rational invariant tori, phase space tunneling, and spectra for non-selfadjoint operators in dimension $2$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 4
SP - 513
EP - 573
AB - We study spectral asymptotics and resolvent bounds for non-selfadjoint perturbations of selfadjoint $h$-pseudodifferential operators in dimension 2, assuming that the classical flow of the unperturbed part is completely integrable. Spectral contributions coming from rational invariant Lagrangian tori are analyzed. Estimating the tunnel effect between strongly irrational (Diophantine) and rational tori, we obtain an accurate description of the spectrum in a suitable complex window, provided that the strength of the non-selfadjoint perturbation $\gg h$ (or sometimes $\gg h^2$) is not too large.
LA - eng
KW - non-selfadjoint; eigenvalue; spectral asymptotics; resolvent; lagrangian; rational torus; diophantine torus; completely integrable; relative determinant; secular perturbation theory; phase space; tunnel effect; pseudodifferential operators; non-selfadjoint perturbations
UR - http://eudml.org/doc/272212
ER -
References
top- [1] G. Benettin, L. Galgani, A. Giorgilli & J.-M. Strelcyn, A proof of Kolmogorov’s theorem on invariant tori using canonical transformations defined by the Lie method, Nuovo Cimento B79 (1984), 201–223.
- [2] N. Dencker, J. Sjöstrand & M. Zworski, Pseudospectra of semiclassical (pseudo-) differential operators, Comm. Pure Appl. Math.57 (2004), 384–415. Zbl1054.35035
- [3] M. Dimassi & J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Note Series 268, Cambridge University Press, 1999. Zbl0926.35002
- [4] C. Gérard & J. Sjöstrand, Résonances en limite semi-classique et exposants de Lyapunov, Comm. Math. Phys.116 (1988), 193–213. Zbl0698.35118
- [5] I. C. Gohberg & M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monographs, vol. 18, Amer. Math. Soc., 1969. Zbl0181.13504
- [6] V. Guillemin & M. Stenzel, Grauert tubes and the homogeneous Monge-Ampère equation, J. Differential Geom.34 (1991), 561–570. Zbl0746.32005
- [7] G. A. Hagedorn & S. L. Robinson, Bohr-Sommerfeld quantization rules in the semiclassical limit, J. Phys. A31 (1998), 10113–10130. Zbl0930.34074
- [8] B. Helffer & D. Robert, Asymptotique des niveaux d’énergie pour des hamiltoniens à un degré de liberté, Duke Math. J.49 (1982), 853–868. Zbl0519.35063
- [9] B. Helffer & J. Sjöstrand, Multiple wells in the semiclassical limit. I, Comm. Partial Differential Equations 9 (1984), 337–408. Zbl0546.35053
- [10] F. Hérau, J. Sjöstrand & C. C. Stolk, Semiclassical analysis for the Kramers-Fokker-Planck equation, Comm. Partial Differential Equations30 (2005), 689–760. Zbl1083.35149
- [11] M. Hitrik, Eigenfrequencies for damped wave equations on Zoll manifolds, Asymptot. Anal.31 (2002), 265–277. Zbl1032.58014MR1937840
- [12] M. Hitrik, Eigenfrequencies and expansions for damped wave equations, Methods Appl. Anal.10 (2003), 543–564. Zbl1088.58510MR2105039
- [13] M. Hitrik & S. V. Ngọc, Perturbations of rational invariant tori and spectra for non-selfadjoint operators, in preparation.
- [14] M. Hitrik & J. Sjöstrand, Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions. I, Ann. Henri Poincaré 5 (2004), 1–73. Zbl1059.47056
- [15] M. Hitrik & J. Sjöstrand, Nonselfadjoint perturbations of selfadjoint operators in two dimensions. II. Vanishing averages, Comm. Partial Differential Equations 30 (2005), 1065–1106. Zbl1096.47053
- [16] M. Hitrik & J. Sjöstrand, Non-selfadjoint perturbations of selfadjoint operators in two dimensions. IIIa. One branching point, Canad. J. Math. 60 (2008), 572–657. Zbl1147.31004
- [17] M. Hitrik, J. Sjöstrand & S. V. Ngọc, Diophantine tori and spectral asymptotics for nonselfadjoint operators, Amer. J. Math.129 (2007), 105–182. Zbl1172.35085
- [18] L. Hörmander, The analysis of linear partial differential operators. I, Springer-Verlag, 2003. Zbl0712.35001
- [19] G. Lebeau, Équation des ondes amorties, in Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Math. Phys. Stud. 19, Kluwer Acad. Publ., 1996, 73–109. Zbl0863.58068MR1385677
- [20] A. J. Lichtenberg & M. A. Lieberman, Regular and chaotic dynamics, second éd., Applied Math. Sciences 38, Springer, 1992. Zbl0748.70001
- [21] A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, Transl. Math. Monographs 71, Amer. Math. Soc., 1988. Zbl0678.47005MR971506
- [22] A. S. Markus & V. I. Matsaev, Comparison theorems for spectra of linear operators and spectral asymptotics, Trudy Moskov. Mat. Obshch.45 (1982), 133–181. Zbl0532.47012
- [23] A. Melin & J. Sjöstrand, Determinants of pseudodifferential operators and complex deformations of phase space, Methods Appl. Anal.9 (2002), 177–237. Zbl1082.35176
- [24] A. Melin & J. Sjöstrand, Bohr-Sommerfeld quantization condition for non-selfadjoint operators in dimension 2, Astérisque284 (2003), 181–244. Zbl1061.35186
- [25] S. V. Ngọc, Systèmes intégrables semi-classiques: du local au global, Panoramas et Synthèses 22, Soc. Math. de France, 2006. Zbl1118.37001
- [26] J. Sjöstrand, Singularités analytiques microlocales, Astérisque95 (1982), 1–166. Zbl0524.35007MR699623
- [27] J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J.60 (1990), 1–57. Zbl0702.35188MR1047116
- [28] J. Sjöstrand, A trace formula and review of some estimates for resonances, in Microlocal analysis and spectral theory (Lucca, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 490, Kluwer Acad. Publ., 1997, 377–437. Zbl0877.35090MR1451399
- [29] J. Sjöstrand, Asymptotic distribution of eigenfrequencies for damped wave equations, Publ. Res. Inst. Math. Sci.36 (2000), 573–611. Zbl0984.35121MR1798488
- [30] J. Sjöstrand, Resonances for bottles and trace formulae, Math. Nachr.221 (2001), 95–149. Zbl0979.35109MR1806367
- [31] J. Sjöstrand, Perturbations of selfadjoint operators with periodic classical flow, in RIMS Kokyuroku 1315, “Wave phenomena and asymptotic analysis”, 1–23.
- [32] J. Sjöstrand & M. Zworski, Asymptotic distribution of resonances for convex obstacles, Acta Math.183 (1999), 191–253. Zbl0989.35099
- [33] J. Sjöstrand & M. Zworski, Fractal upper bounds on the density of semiclassical resonances, Duke Math. J.137 (2007), 381–459. Zbl1201.35189
- [34] Y. Colin de Verdière, Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques, Comment. Math. Helv.54 (1979), 508–522. Zbl0459.58014MR543346
- [35] A. Weinstein, Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J.44 (1977), 883–892. Zbl0385.58013MR482878
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.