Rational invariant tori, phase space tunneling, and spectra for non-selfadjoint operators in dimension 2

Michael Hitrik; Johannes Sjöstrand

Annales scientifiques de l'École Normale Supérieure (2008)

  • Volume: 41, Issue: 4, page 513-573
  • ISSN: 0012-9593

Abstract

top
We study spectral asymptotics and resolvent bounds for non-selfadjoint perturbations of selfadjoint h -pseudodifferential operators in dimension 2, assuming that the classical flow of the unperturbed part is completely integrable. Spectral contributions coming from rational invariant Lagrangian tori are analyzed. Estimating the tunnel effect between strongly irrational (Diophantine) and rational tori, we obtain an accurate description of the spectrum in a suitable complex window, provided that the strength of the non-selfadjoint perturbation h (or sometimes h 2 ) is not too large.

How to cite

top

Hitrik, Michael, and Sjöstrand, Johannes. "Rational invariant tori, phase space tunneling, and spectra for non-selfadjoint operators in dimension $2$." Annales scientifiques de l'École Normale Supérieure 41.4 (2008): 513-573. <http://eudml.org/doc/272212>.

@article{Hitrik2008,
abstract = {We study spectral asymptotics and resolvent bounds for non-selfadjoint perturbations of selfadjoint $h$-pseudodifferential operators in dimension 2, assuming that the classical flow of the unperturbed part is completely integrable. Spectral contributions coming from rational invariant Lagrangian tori are analyzed. Estimating the tunnel effect between strongly irrational (Diophantine) and rational tori, we obtain an accurate description of the spectrum in a suitable complex window, provided that the strength of the non-selfadjoint perturbation $\gg h$ (or sometimes $\gg h^2$) is not too large.},
author = {Hitrik, Michael, Sjöstrand, Johannes},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {non-selfadjoint; eigenvalue; spectral asymptotics; resolvent; lagrangian; rational torus; diophantine torus; completely integrable; relative determinant; secular perturbation theory; phase space; tunnel effect; pseudodifferential operators; non-selfadjoint perturbations},
language = {eng},
number = {4},
pages = {513-573},
publisher = {Société mathématique de France},
title = {Rational invariant tori, phase space tunneling, and spectra for non-selfadjoint operators in dimension $2$},
url = {http://eudml.org/doc/272212},
volume = {41},
year = {2008},
}

TY - JOUR
AU - Hitrik, Michael
AU - Sjöstrand, Johannes
TI - Rational invariant tori, phase space tunneling, and spectra for non-selfadjoint operators in dimension $2$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 4
SP - 513
EP - 573
AB - We study spectral asymptotics and resolvent bounds for non-selfadjoint perturbations of selfadjoint $h$-pseudodifferential operators in dimension 2, assuming that the classical flow of the unperturbed part is completely integrable. Spectral contributions coming from rational invariant Lagrangian tori are analyzed. Estimating the tunnel effect between strongly irrational (Diophantine) and rational tori, we obtain an accurate description of the spectrum in a suitable complex window, provided that the strength of the non-selfadjoint perturbation $\gg h$ (or sometimes $\gg h^2$) is not too large.
LA - eng
KW - non-selfadjoint; eigenvalue; spectral asymptotics; resolvent; lagrangian; rational torus; diophantine torus; completely integrable; relative determinant; secular perturbation theory; phase space; tunnel effect; pseudodifferential operators; non-selfadjoint perturbations
UR - http://eudml.org/doc/272212
ER -

References

top
  1. [1] G. Benettin, L. Galgani, A. Giorgilli & J.-M. Strelcyn, A proof of Kolmogorov’s theorem on invariant tori using canonical transformations defined by the Lie method, Nuovo Cimento B79 (1984), 201–223. 
  2. [2] N. Dencker, J. Sjöstrand & M. Zworski, Pseudospectra of semiclassical (pseudo-) differential operators, Comm. Pure Appl. Math.57 (2004), 384–415. Zbl1054.35035
  3. [3] M. Dimassi & J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Note Series 268, Cambridge University Press, 1999. Zbl0926.35002
  4. [4] C. Gérard & J. Sjöstrand, Résonances en limite semi-classique et exposants de Lyapunov, Comm. Math. Phys.116 (1988), 193–213. Zbl0698.35118
  5. [5] I. C. Gohberg & M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monographs, vol. 18, Amer. Math. Soc., 1969. Zbl0181.13504
  6. [6] V. Guillemin & M. Stenzel, Grauert tubes and the homogeneous Monge-Ampère equation, J. Differential Geom.34 (1991), 561–570. Zbl0746.32005
  7. [7] G. A. Hagedorn & S. L. Robinson, Bohr-Sommerfeld quantization rules in the semiclassical limit, J. Phys. A31 (1998), 10113–10130. Zbl0930.34074
  8. [8] B. Helffer & D. Robert, Asymptotique des niveaux d’énergie pour des hamiltoniens à un degré de liberté, Duke Math. J.49 (1982), 853–868. Zbl0519.35063
  9. [9] B. Helffer & J. Sjöstrand, Multiple wells in the semiclassical limit. I, Comm. Partial Differential Equations 9 (1984), 337–408. Zbl0546.35053
  10. [10] F. Hérau, J. Sjöstrand & C. C. Stolk, Semiclassical analysis for the Kramers-Fokker-Planck equation, Comm. Partial Differential Equations30 (2005), 689–760. Zbl1083.35149
  11. [11] M. Hitrik, Eigenfrequencies for damped wave equations on Zoll manifolds, Asymptot. Anal.31 (2002), 265–277. Zbl1032.58014MR1937840
  12. [12] M. Hitrik, Eigenfrequencies and expansions for damped wave equations, Methods Appl. Anal.10 (2003), 543–564. Zbl1088.58510MR2105039
  13. [13] M. Hitrik & S. V. Ngọc, Perturbations of rational invariant tori and spectra for non-selfadjoint operators, in preparation. 
  14. [14] M. Hitrik & J. Sjöstrand, Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions. I, Ann. Henri Poincaré 5 (2004), 1–73. Zbl1059.47056
  15. [15] M. Hitrik & J. Sjöstrand, Nonselfadjoint perturbations of selfadjoint operators in two dimensions. II. Vanishing averages, Comm. Partial Differential Equations 30 (2005), 1065–1106. Zbl1096.47053
  16. [16] M. Hitrik & J. Sjöstrand, Non-selfadjoint perturbations of selfadjoint operators in two dimensions. IIIa. One branching point, Canad. J. Math. 60 (2008), 572–657. Zbl1147.31004
  17. [17] M. Hitrik, J. Sjöstrand & S. V. Ngọc, Diophantine tori and spectral asymptotics for nonselfadjoint operators, Amer. J. Math.129 (2007), 105–182. Zbl1172.35085
  18. [18] L. Hörmander, The analysis of linear partial differential operators. I, Springer-Verlag, 2003. Zbl0712.35001
  19. [19] G. Lebeau, Équation des ondes amorties, in Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Math. Phys. Stud. 19, Kluwer Acad. Publ., 1996, 73–109. Zbl0863.58068MR1385677
  20. [20] A. J. Lichtenberg & M. A. Lieberman, Regular and chaotic dynamics, second éd., Applied Math. Sciences 38, Springer, 1992. Zbl0748.70001
  21. [21] A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, Transl. Math. Monographs 71, Amer. Math. Soc., 1988. Zbl0678.47005MR971506
  22. [22] A. S. Markus & V. I. Matsaev, Comparison theorems for spectra of linear operators and spectral asymptotics, Trudy Moskov. Mat. Obshch.45 (1982), 133–181. Zbl0532.47012
  23. [23] A. Melin & J. Sjöstrand, Determinants of pseudodifferential operators and complex deformations of phase space, Methods Appl. Anal.9 (2002), 177–237. Zbl1082.35176
  24. [24] A. Melin & J. Sjöstrand, Bohr-Sommerfeld quantization condition for non-selfadjoint operators in dimension 2, Astérisque284 (2003), 181–244. Zbl1061.35186
  25. [25] S. V. Ngọc, Systèmes intégrables semi-classiques: du local au global, Panoramas et Synthèses 22, Soc. Math. de France, 2006. Zbl1118.37001
  26. [26] J. Sjöstrand, Singularités analytiques microlocales, Astérisque95 (1982), 1–166. Zbl0524.35007MR699623
  27. [27] J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J.60 (1990), 1–57. Zbl0702.35188MR1047116
  28. [28] J. Sjöstrand, A trace formula and review of some estimates for resonances, in Microlocal analysis and spectral theory (Lucca, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 490, Kluwer Acad. Publ., 1997, 377–437. Zbl0877.35090MR1451399
  29. [29] J. Sjöstrand, Asymptotic distribution of eigenfrequencies for damped wave equations, Publ. Res. Inst. Math. Sci.36 (2000), 573–611. Zbl0984.35121MR1798488
  30. [30] J. Sjöstrand, Resonances for bottles and trace formulae, Math. Nachr.221 (2001), 95–149. Zbl0979.35109MR1806367
  31. [31] J. Sjöstrand, Perturbations of selfadjoint operators with periodic classical flow, in RIMS Kokyuroku 1315, “Wave phenomena and asymptotic analysis”, 1–23. 
  32. [32] J. Sjöstrand & M. Zworski, Asymptotic distribution of resonances for convex obstacles, Acta Math.183 (1999), 191–253. Zbl0989.35099
  33. [33] J. Sjöstrand & M. Zworski, Fractal upper bounds on the density of semiclassical resonances, Duke Math. J.137 (2007), 381–459. Zbl1201.35189
  34. [34] Y. Colin de Verdière, Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques, Comment. Math. Helv.54 (1979), 508–522. Zbl0459.58014MR543346
  35. [35] A. Weinstein, Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J.44 (1977), 883–892. Zbl0385.58013MR482878

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.