Lecture notes : Spectral properties of non-self-adjoint operators

Johannes Sjöstrand[1]

  • [1] IMB, Université de Bourgogne, 9, Av. A. Savary, BP 47870, FR-21078 Dijon Cédex, and UMR 5584, CNRS

Journées Équations aux dérivées partielles (2009)

  • page 1-111
  • ISSN: 0752-0360


This text contains a slightly expanded version of my 6 hour mini-course at the PDE-meeting in Évian-les-Bains in June 2009. The first part gives some old and recent results on non-self-adjoint differential operators. The second part is devoted to recent results about Weyl distribution of eigenvalues of elliptic operators with small random perturbations. Part III, in collaboration with B. Helffer, gives explicit estimates in the Gearhardt-Prüss theorem for semi-groups.

How to cite


Sjöstrand, Johannes. "Lecture notes : Spectral properties of non-self-adjoint operators." Journées Équations aux dérivées partielles (2009): 1-111. <http://eudml.org/doc/116372>.

abstract = {This text contains a slightly expanded version of my 6 hour mini-course at the PDE-meeting in Évian-les-Bains in June 2009. The first part gives some old and recent results on non-self-adjoint differential operators. The second part is devoted to recent results about Weyl distribution of eigenvalues of elliptic operators with small random perturbations. Part III, in collaboration with B. Helffer, gives explicit estimates in the Gearhardt-Prüss theorem for semi-groups.},
affiliation = {IMB, Université de Bourgogne, 9, Av. A. Savary, BP 47870, FR-21078 Dijon Cédex, and UMR 5584, CNRS; Laboratoire de Matématiques, Univ Paris-Sud and CNRS, F91405 Orsay Cedex France},
author = {Sjöstrand, Johannes},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-111},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Lecture notes : Spectral properties of non-self-adjoint operators},
url = {http://eudml.org/doc/116372},
year = {2009},

AU - Sjöstrand, Johannes
TI - Lecture notes : Spectral properties of non-self-adjoint operators
JO - Journées Équations aux dérivées partielles
DA - 2009/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 111
AB - This text contains a slightly expanded version of my 6 hour mini-course at the PDE-meeting in Évian-les-Bains in June 2009. The first part gives some old and recent results on non-self-adjoint differential operators. The second part is devoted to recent results about Weyl distribution of eigenvalues of elliptic operators with small random perturbations. Part III, in collaboration with B. Helffer, gives explicit estimates in the Gearhardt-Prüss theorem for semi-groups.
LA - eng
UR - http://eudml.org/doc/116372
ER -


  1. S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math 15(1962), 119–147. Zbl0109.32701MR147774
  2. S. Agmon, Lectures on elliptic boundary value problems, Van Nostrand Mathematical Studies, No. 2 D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London 1965 Zbl0142.37401MR178246
  3. M.S. Agranovich, A.S. Markus, On spectral properties of elliptic pseudo-differential operators far from selfadjoint ones, Z. Anal. Anwendungen 8 (1989), no. 3, 237–260. Zbl0696.35123MR1023117
  4. M.S. Agranovich, Personal communication, October 2009. 
  5. Y. Almog, The stability of the normal state of superconductors in the presence of electric currents, Siam J. Math. Anal. 40 (2)(2008), 824-850. Zbl1165.82029MR2438788
  6. N. Anantharaman, Spectral deviations for the damped wave equation, http://arxiv.org/abs/0904.1736 Zbl1205.35173MR2720225
  7. V.G. Avakumović, Uber die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten, Math. Z. 65(1956), 324–344. Zbl0070.32601MR80862
  8. J.M.Bismut, The hypoelliptic Laplacian on the cotangent bundle, J. Amer. Math. Soc. 18(2005), 379-476. Zbl1065.35098MR2137981
  9. P. Bleher, B. Shiffman, S. Zelditch, Universality and scaling of correlations between zeros on complex manifolds, Invent. Math. 142(2)(2000), 351–395. Zbl0964.60096MR1794066
  10. W. Bordeaux Montrieux, Loi de Weyl presque sûre et résolvante pour des opérateurs différentiels non-autoadjoints, thèse, CMLS, Ecole Polytechnique, 2008. http://pastel.paristech.org/5367/ 
  11. W. Bordeaux Montrieux, J. Sjöstrand, Almost sure Weyl asymptotics for non-self-adjoint elliptic operators on compact manifolds, http://arxiv.org/abs/0903.2937 Zbl1228.47046
  12. L.S. Boulton, Non-self-adjoint harmonic oscillator, compact semigroups and pseudospectra, J. Operator Theory 47(2)(2002), 413-429. Zbl1034.34099MR1911854
  13. N. Burq, M. Zworski, Geometric control in the presence of a black box, J. Amer. Math. Soc. 17(2)(2004), 443-471. Zbl1050.35058MR2051618
  14. T. Carleman, Über die asymptotische Verteilung der Eigenwerte partielle Differentialgleichungen, Berichten der mathematisch-physisch Klasse der Sächsischen Akad. der Wissenschaften zu Leipzig, LXXXVIII Band, Sitsung v. 15. Juni 1936. Zbl0017.11402
  15. T.W. Cherry, On the solution of Hamiltonian systems of differential equations in the neighboorhood of a singular point, Proc. London. Math. Soc. 27(1928), 151-170. Zbl53.0406.03
  16. T. Christiansen, Several complex variables and the distribution of resonances in potential scattering, Comm. Math. Phys. 259(3)(2005), 711–728. Zbl1088.81093MR2174422
  17. T. Christiansen, Several complex variables and the order of growth of the resonance counting function in Euclidean scattering, Int. Math. Res. Not. 2006, Art. ID 43160, 36 pp Zbl1161.35455MR2272101
  18. T. Christiansen, P.D. Hislop, The resonance counting function for Schrödinger operators with generic potentials, Math. Res. Lett. 12(5–6)(2005), 821–826. Zbl1155.35319MR2189242
  19. T.J. Christiansen, M. Zworski, Probabilistic Weyl laws for quantized tori, http://arxiv.org/abs/0909.2014 Zbl1205.53092MR2679813
  20. Y. Colin de Verdière, Quasi-modes sur les variétés Riemanniennes, Inv. Math. 43(1977), 15–52. Zbl0449.53040MR501196
  21. E.B. Davies, Semi-classical states for non-self-adjoint Schrödinger operators, Comm. Math. Phys. 200(1)(1999), 35–41. Zbl0921.47060MR1671904
  22. E.B. Davies, Pseudospectra, the harmonic oscillator and complex resonances, Proc. Roy. Soc. London Ser. A 455(1999), 585–599. Zbl0931.70016MR1700903
  23. E.B. Davies, Linear operators and their spectra, Cambridge Studies in Advanced Mathematics, 106. Cambridge University Press, Cambridge, 2007. Zbl1138.47001MR2359869
  24. E.B. Davies, Semigroup growth bounds, J. Op. Theory 53(2)(2005), 225–249. Zbl1114.47040MR2153147
  25. E.B. Davies, M. Hager, Perturbations of Jordan matrices, J. Approx. Theory 156(1)(2009), 82–94. Zbl1164.15004MR2490477
  26. N. Dencker, J. Sjöstrand, M. Zworski, Pseudospectra of semiclassical (pseudo-) differential operators, Comm. Pure Appl. Math. 57(3)(2004), 384–415. Zbl1054.35035MR2020109
  27. M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268. Cambridge University Press, Cambridge, 1999. Zbl0926.35002MR1735654
  28. L. Desvillettes, C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation, Comm. Pure Appl. Math., 54(1)(2001), 1–42. Zbl1029.82032MR1787105
  29. J.P. Eckmann, M. Hairer, Spectral properties of hypoelliptic operators, Comm. Math. Phys. 235(2)(2003), 233–253. Zbl1040.35016MR1969727
  30. K.J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000. Zbl0952.47036MR1721989
  31. K.J. Engel, R. Nagel, A short course on operator semi-groups, Unitext, Springer-Verlag (2005). Zbl1106.47001
  32. I. Gallagher, Th. Gallay, F. Nier, Spectral asymptotics for large skew-symmetric perturbations of the harmonic oscillator, Int. Math. Res. Not. IMRN 2009, no. 12, 2147–2199. Zbl1180.35383MR2511908
  33. I.C. Gohberg, M.G. Krein, Introduction to the theory of linear non-selfadjoint operators, Translations of mathematical monographs, Vol 18, AMS, Providence, R.I. (1969). Zbl0181.13504MR246142
  34. S. Graffi, C. Villegas Blas, A uniform quantum version of the Cherry theorem, Comm. Math. Phys. 278(1)(2008), 101–116. Zbl1151.81015MR2367199
  35. A. Grigis, J. Sjöstrand, Microlocal analysis for differential operators, London Math. Soc. Lecture Notes Ser., 196, Cambridge Univ. Press, (1994). Zbl0804.35001MR1269107
  36. M. Hager, Instabilité spectrale semiclassique d’opérateurs non-autoadjoints, Thesis (2005), http://tel.ccsd.cnrs.fr/docs/00/04/87/08/PDF/tel-00010848.pdf 
  37. M. Hager, Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints. I. Un modèle, Ann. Fac. Sci. Toulouse Math. (6)15(2)(2006), 243–280. Zbl1131.34057MR2244217
  38. M. Hager, Instabilité spectrale semiclassique d’opérateurs non-autoadjoints. II. Ann. Henri Poincaré, 7(6)(2006), 1035–1064. Zbl1115.81032MR2267057
  39. M. Hager, J. Sjöstrand, Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators, Math. Annalen, 342(1)(2008), 177–243. Zbl1151.35063MR2415321
  40. B. Helffer, On spectral problems related to a time dependent model in superconductivity with electric current, Proceedings of the conference in PDE in Evian, June 2009, to appear. Zbl1223.82070
  41. B. Helffer, F. Nier, Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Lecture Notes in Mathematics, 1862, Springer-Verlag, Berlin, 2005. Zbl1072.35006MR2130405
  42. B. Helffer, J. Sjöstrand, Multiple wells in the semiclassical limit. I. Comm. Partial Differential Equations 9(4) (1984), 337–408. Zbl0546.35053MR740094
  43. B. Helffer, J. Sjöstrand, Puits multiples en mécanique semi-classique. IV. Étude du complexe de Witten, Comm. Partial Differential Equations 10(3)(1985), 245–340. Zbl0597.35024MR780068
  44. B. Helffer, J. Sjöstrand, Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.) 24–25(1986), Zbl0631.35075MR871788
  45. F. Hérau, M. Hitrik, J. Sjöstrand, Tunnel effect for Fokker-Planck type operators, Annales Henri Poincaré, 9(2)(2008), 209–274. Zbl1141.82011MR2399189
  46. F. Hérau, M. Hitrik, J. Sjöstrand, Tunnel effect for Kramers-Fokker-Planck type operators: return to equilibrium and applications, International Math Res Notices, Vol. 2008, Article ID rnn057, 48p. Zbl1151.35012MR2438070
  47. F. Hérau, F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal. 171 (2004), no. 2, 151–218. Zbl1139.82323MR2034753
  48. F. Hérau, J. Sjöstrand, C. Stolk, Semiclassical analysis for the Kramers-Fokker-Planck equation, Comm. PDE 30(5–6)(2005), 689–760. Zbl1083.35149MR2153513
  49. M. Hitrik, Eigenfunctions and expansions for damped wave equations, Meth. Appl. Anal. 10 (4)(2003), 1-22. Zbl1088.58510MR2105039
  50. M. Hitrik, Boundary spectral behavior for semiclassical operators in dimension one, Int. Math. Res. Not. 2004, no. 64, 3417–3438. Zbl1077.35105MR2101278
  51. M. Hitrik, L. Pravda-Starov, Spectra and semigroup smoothing for non-elliptic quadratic operators, Math. Ann. 344(4)(2009), 801–846. Zbl1171.47038MR2507625
  52. M. Hitrik, J. Sjöstrand, Rational invariant tori, phase space tunneling, and spectra for non-selfadjoint operators in dimension 2, Annales Sci ENS, sér. 4, 41(4)(2008), 511-571. Zbl1171.35131MR2489633
  53. M. Hitrik, J. Sjöstrand, S. Vũ Ngọc, Diophantine tori and spectral asymptotics for non-selfadjoint operators, Amer. J. Math. 129(1)(2007), 105–182. Zbl1172.35085MR2288739
  54. L. Hörmander, Differential equations without solutions, Math. Ann. 140(1960), 169–173. Zbl0093.28903MR147765
  55. L. Hörmander, Differential operators of principal type, Math. Ann. 140(1960), 124–146. Zbl0090.08101MR130574
  56. L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193–218. Zbl0164.13201MR609014
  57. L. Hörmander, On the existence and the regularity of solutions of linear pseudo-differential equations, Série des Conférences de l’Union Mathématique Internationale, No. 1. Monographie No. 18 de l’Enseignement Mathématique. Secrétariat de l’Enseignement Mathématique, Université de Genève, Geneva, 1971. 69 pp. Zbl0224.35085MR344944
  58. L. Hörmander, The analysis of linear partial differential operators. I–IV, Grundlehren der Mathematischen Wissenschaften 256, 257, 274, 275, Springer-Verlag, Berlin, 1983, 1985. Zbl0521.35001MR717035
  59. D. Jerison, Locating the first nodal line in the Neumann problem, Trans. Amer. Math. Soc. 352(5)(2000), 2301–2317. Zbl0958.35028MR1694293
  60. M.V. Keldysh, On the eigenvalues and eigenfunctions of certain classes of nonselfadjoint equations, Dokl. Akad. Nauk SSSR 77(1951),11–14. English translation in [71] Zbl0045.39402
  61. M.V. Keldysh, On a Tauberian theorem, Trudy Mat. Inst. Steklov, 38(1951), 77–86; English transl. in AMS Transl. (2) 102(1973) Zbl0102.09902MR46463
  62. M.V. Keldysh, On completeness of the eigenfunctions for certain classes of nonselfadjoint linear operators, Uspekhi Mat. Nauk 27(1971)no. 4(160), 15–41. Zbl0225.47008MR300125
  63. V.V. Kučerenko, Asymptotic solutions of equations with complex characteristics, (Russian) Mat. Sb. (N.S.) 95(137)(1974), 163–213, 327. Zbl0311.35007MR367422
  64. B. Lascar, J. Sjöstrand, Equation de Schrödinger et propagation des singularités pour des opérateurs pseudodifférentiels à caractéristiques réelles de multiplicité variable I, Astérisque, 95(1982), 467–523. Zbl0529.58033
  65. V.F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions. With an addendum by A.I. Shnirelman.  Ergebnisse der Mathematik und ihrer Grenzgebiete, 24. Springer-Verlag, Berlin, 1993. Zbl0814.58001MR1239173
  66. G. Lebeau, Equation des ondes amorties, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), 73–109, Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, 1996. Zbl0863.58068MR1385677
  67. G. Lebeau, Le bismutien, Sém. é.d.p., Ecole Pol. 2004–05,I.1–I.15 MR2182046
  68. B.Ya. Levin, Distribution of zeros of entire functions, English translation, Amer. Math. Soc., Providence, R.I., 1980 Zbl0152.06703MR589888
  69. B.M. Levitan, Some questions of spectral theory of selfadjoint differential operators, Uspehi Mat. Nauk (N.S.) 11 no. 6 (72)(1956), 117–144. Zbl0073.32004MR104043
  70. A.J. Lichtenberg, M.A. Lieberman, Regular and chaotic dynamics, Second edition. Springer-Verlag, New York, 1992. Zbl0748.70001MR1169466
  71. A.S. Markus, Introduction to the spectral theory of polynomial operator pencils, Translated from the Russian by H.H. McFaden. Translation edited by Ben Silver. With an appendix by M. V. Keldysh. Translations of Mathematical Monographs, 71. American Mathematical Society, Providence, RI, 1988. Zbl0678.47005MR971506
  72. A.S. Markus, V.I. Matseev, Asymptotic behavior of the spectrum of close-to-normal operators, Funktsional. Anal. i Prilozhen. 13(3)(1979), 93–94, Functional Anal. Appl. 13(3)(1979), 233–234 (1980). Zbl0457.47005MR545380
  73. J. Martinet, Sur les propriétés spectrales d’opérateurs nonautoadjoints provenant de la mécanique des fluides, Thèse de doctorat, Université de Paris Sud, 2009. 
  74. V.P. Maslov, Operational methods, Translated from the Russian by V. Golo, N. Kulman and G. Voropaeva. Mir Publishers, Moscow, 1976. Zbl0449.47002MR512495
  75. O. Matte, Correlation asymptotics for non-translation invariant lattice spin systems, Math. Nachr. 281(5)(2008), 721–759. Zbl1144.82311MR2401514
  76. A. Melin, J. Sjoestrand, Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem, Comm. Partial Differential Equations 1(4)(1976), 313–400. Zbl0364.35049MR455054
  77. A. Melin, J. Sjöstrand, Determinants of pseudodifferential operators and complex deformations of phase space, Methods and Applications of Analysis, 9(2)(2002), 177-238. Zbl1082.35176MR1957486
  78. A. Melin, J. Sjöstrand, Bohr-Sommerfeld quantization condition for non-selfadjoint operators in dimension 2, Astérisque, 284(2003), 181–244. Zbl1061.35186MR2003421
  79. A. Menikoff, J. Sjöstrand, On the eigenvalues of a class of hypo-elliptic operators, Math. Ann. 235(1978), 55-85. Zbl0375.35014MR481627
  80. J. Moser, On the generalization of a theorem of A. Liapounoff, Comm. Pure Appl. Math. 11(1958), 257–271. Zbl0082.08003MR96021
  81. A. Pazy, Semigroups of linear operators and applications to partial differential operators. Appl. Math. Sci. Vol. 44, Springer (1983). Zbl0516.47023MR710486
  82. K. Pravda-Starov, Étude du pseudo-spectre d’opérateurs non auto-adjoints, thesis 2006, http://tel.archives-ouvertes.fr/docs/00/10/98/95/PDF/manuscrit.pdf 
  83. K. Pravda-Starov, A complete study of the pseudo-spectrum for the rotated harmonic oscillator, J. London Math. Soc. (2) 73(3)(2006), 745–761. Zbl1106.34060MR2241978
  84. K. Pravda-Starov, Boundary pseudospectral behaviour for semiclassical operators in one dimension, Int. Math. Res. Not. IMRN 2007, no. 9, Art. ID rnm 029, 31 pp. Zbl1135.47048MR2347297
  85. K. Pravda-Starov, On the pseudospectrum of elliptic quadratic differential operators, Duke Math. J. 145(2)(2008), 249–279. Zbl1157.35129MR2449947
  86. D. Robert, Autour de l’approximation semi-classique, Progress in Mathematics, 68. Birkhäuser Boston, Inc., Boston, MA, 1987. Zbl0621.35001MR897108
  87. M. Rudelson, Invertibility of random matrices: norm of the inverse, Ann.of Math. 168(2)(2008), 575–600. Zbl1175.15030MR2434885
  88. E. Schenk, Resonances distribution in partially open quantum chaotic systems, (joint work with Stéphane Nonnenmacher) Talk on November 28th, 2008 at Nice days of waves in complex media. 
  89. E. Schenk, Systèmes quantiques ouverts et méthodes semi-classiques, thèse novembre 2009. http://www.lpthe.jussieu.fr/ schenck/thesis.pdf 
  90. B. Shiffman, S. Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. Math. Phys. 200(3)(1999), 661–683. Zbl0919.32020MR1675133
  91. R.T. Seeley, Complex powers of an elliptic operator. 1967 Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) pp. 288–307 Amer. Math. Soc., Providence, R.I. Zbl0159.15504MR237943
  92. R. Seeley, A simple example of spectral pathology for differential operators, Comm. Partial Differential Equations 11(6)(1986), 595–598. Zbl0598.35013MR837277
  93. B. Simon, Semiclassical analysis of low lying eigenvalues. II. Tunneling, Ann. of Math. (2) 120(1)(1984), 89–118. Zbl0626.35070MR750717
  94. J. Sjöstrand, Singularités analytiques microlocales, Astérisque, 95(1982). Zbl0524.35007MR699623
  95. J. Sjöstrand, Resonances for bottles and trace formulae, Math. Nachr., 221(2001), 95–149. Zbl0979.35109MR1806367
  96. J. Sjöstrand, Asymptotic distribution of eigenfrequencies for damped wave equations, Publ. of RIMS Kyoto Univ., 36(5)(2000), 573–611. Zbl0984.35121MR1798488
  97. J. Sjöstrand, Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations, Ann. Fac. Sci Toulouse, to appear http://arxiv.org/abs/0802.3584 Zbl1194.47058MR2590387
  98. J. Sjöstrand, Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations, http://arxiv.org/abs/0809.4182 Zbl1206.35267MR2674764
  99. J. Sjöstrand, Resolvent estimates for non-self-adjoint operators via semi-groups, http://arxiv.org/abs/0906.0094 pages 359–384 in International Mathematical Series Vol 13, Around the research of Vladimir Maz’ya III, Springer, Tamara Rozhkovskaya Publisher, 2010 http://arxiv.org/abs/0906.0094 Zbl1198.47068MR2664715
  100. J. Sjöstrand, Counting zeros of holomorphic functions of exponential growth, http://arxiv.org/abs/0910.0346 Zbl1214.30006MR2679744
  101. J. Sjöstrand, M. Zworski, Elementary linear algebra for advanced spectral problems, Annales Inst. Fourier, 57 (7) (2007), 2095–2141. http://arxiv.org/math.SP/0312166. Zbl1140.15009MR2394537
  102. J. Sjöstrand, M. Zworski, Fractal upper bounds on the density of semiclassical resonances, Duke Math J, 137 (3) (2007), 381-459. Zbl1201.35189MR2309150
  103. J. Sjöstrand, M. Zworski, Elementary linear algebra for advanced spectral problems, http://arxiv.org/abs/math/0312166, Ann. Inst. Fourier, to appear. Zbl1140.15009MR2394537
  104. J. Tailleur, S. Tanase-Nicola, J. Kurchan, Kramers equation and supersymmetry, J. Stat. Phys. 122(4)(2006), 557–595. Zbl1149.81013MR2213943
  105. L.N. Trefethen, Pseudospectra of linear operators, SIAM Rev. 39(3)(1997), 383–406. Zbl0896.15006MR1469941
  106. L.N. Trefethen, M. Embree, Spectra and pseudospectra. The behavior of nonnormal matrices and operators, Princeton University Press, Princeton, NJ, 2005. Zbl1085.15009MR2155029
  107. C. Villani, Hypocoercivity. Memoirs of the AMS, Vol. 202, no. 950 (2009). Zbl1197.35004MR2562709
  108. S. Vũ Ngọc, Systèmes intégrables semi-classiques: du local au global, Panoramas et Synthèses, 22. Société Mathématique de France, Paris, 2006. Zbl1118.37001MR2331010
  109. G. Weiss, The resolvent growth assumption for semigroups on Hilbert spaces, J. Math. An. Appl. 145(1990), 154–171. Zbl0693.47034MR1031182
  110. H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann., 71(4)(1912), 441–479 Zbl43.0436.01MR1511670
  111. J. Wunsch, M. Zworski, The FBI transform on compact C manifolds, Trans. A.M.S., 353(3)(2001), 1151–1167. Zbl0974.35005MR1804416
  112. M. Zworski, Distribution of poles for scattering on the real line, J. Funct. Anal. 73(2)(1987), 277–296. Zbl0662.34033MR899652
  113. M. Zworski, A remark on a paper of E. B Davies: “Semi-classical states for non-self-adjoint Schrödinger operators”, Comm. Math. Phys. 200(1)(1999), 35–41 Proc. Amer. Math. Soc. 129 (10) (2001), 2955–2957 Zbl0981.35107MR1840099

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.