Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps

Viviane Baladi; Daniel Smania

Annales scientifiques de l'École Normale Supérieure (2012)

  • Volume: 45, Issue: 6, page 861-926
  • ISSN: 0012-9593

Abstract

top
We consider C 2 families t f t of  C 4 unimodal maps f t whose critical point is slowly recurrent, and we show that the unique absolutely continuous invariant measure μ t of  f t depends differentiably on  t , as a distribution of order 1 . The proof uses transfer operators on towers whose level boundaries are mollified via smooth cutoff functions, in order to avoid artificial discontinuities. We give a new representation of  μ t for a Benedicks-Carleson map f t , in terms of a single smooth function and the inverse branches of  f t along the postcritical orbit. Along the way, we prove that the twisted cohomological equation v = α f - f ' α has a continuous solution α , if f is Benedicks-Carleson and v is horizontal for  f .

How to cite

top

Baladi, Viviane, and Smania, Daniel. "Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps." Annales scientifiques de l'École Normale Supérieure 45.6 (2012): 861-926. <http://eudml.org/doc/272218>.

@article{Baladi2012,
abstract = {We consider $C^2$ families $t\mapsto f_t$ of $C^\{4\}$ unimodal maps $f_t$ whose critical point is slowly recurrent, and we show that the unique absolutely continuous invariant measure $\mu _t$ of $f_t$ depends differentiably on $t$, as a distribution of order $1$. The proof uses transfer operators on towers whose level boundaries are mollified via smooth cutoff functions, in order to avoid artificial discontinuities. We give a new representation of $\mu _t$ for a Benedicks-Carleson map $f_t$, in terms of a single smooth function and the inverse branches of $f_t$ along the postcritical orbit. Along the way, we prove that the twisted cohomological equation $v=\alpha \circ f - f^\{\prime \} \alpha $ has a continuous solution $\alpha $, if $f$ is Benedicks-Carleson and $v$ is horizontal for $f$.},
author = {Baladi, Viviane, Smania, Daniel},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {smooth unimodal maps; linear response; Benedicks–Carleson; SRB measures; absolutely continuous invariant measures; transfer operator},
language = {eng},
number = {6},
pages = {861-926},
publisher = {Société mathématique de France},
title = {Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps},
url = {http://eudml.org/doc/272218},
volume = {45},
year = {2012},
}

TY - JOUR
AU - Baladi, Viviane
AU - Smania, Daniel
TI - Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 6
SP - 861
EP - 926
AB - We consider $C^2$ families $t\mapsto f_t$ of $C^{4}$ unimodal maps $f_t$ whose critical point is slowly recurrent, and we show that the unique absolutely continuous invariant measure $\mu _t$ of $f_t$ depends differentiably on $t$, as a distribution of order $1$. The proof uses transfer operators on towers whose level boundaries are mollified via smooth cutoff functions, in order to avoid artificial discontinuities. We give a new representation of $\mu _t$ for a Benedicks-Carleson map $f_t$, in terms of a single smooth function and the inverse branches of $f_t$ along the postcritical orbit. Along the way, we prove that the twisted cohomological equation $v=\alpha \circ f - f^{\prime } \alpha $ has a continuous solution $\alpha $, if $f$ is Benedicks-Carleson and $v$ is horizontal for $f$.
LA - eng
KW - smooth unimodal maps; linear response; Benedicks–Carleson; SRB measures; absolutely continuous invariant measures; transfer operator
UR - http://eudml.org/doc/272218
ER -

References

top
  1. [1] J. F. Alves, M. Carvalho & J. M. Freitas, Statistical stability and continuity of SRB entropy for systems with Gibbs-Markov structures, Comm. Math. Phys.296 (2010), 739–767. Zbl1196.82064MR2628821
  2. [2] J. F. Alves, M. Carvalho & J. M. Freitas, Statistical stability for Hénon maps of the Benedicks-Carleson type, Ann. Inst. H. Poincaré Anal. Non Linéaire27 (2010), 595–637. Zbl1205.37040MR2595193
  3. [3] A. Avila, Infinitesimal perturbations of rational maps, Nonlinearity15 (2002), 695–704. Zbl1073.37051MR1901100
  4. [4] A. Avila, M. Lyubich & W. de Melo, Regular or stochastic dynamics in real analytic families of unimodal maps, Invent. Math154 (2003), 451–550. Zbl1050.37018MR2018784
  5. [5] A. Avila & C. G. Moreira, Bifurcations of unimodal maps, in Dynamical systems. Part II, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., 2003, 1–22. Zbl1070.37018MR2071235
  6. [6] A. Avila & C. G. Moreira, Phase-parameter relation and sharp statistical properties for general families of unimodal maps, in Geometry and dynamics, Contemp. Math. 389, Amer. Math. Soc., 2005, 1–42. Zbl1145.37022MR2181956
  7. [7] V. Baladi, On the susceptibility function of piecewise expanding interval maps, Comm. Math. Phys.275 (2007), 839–859. Zbl1140.37327MR2336367
  8. [8] V. Baladi, Linear response despite critical points, Nonlinearity 21 (2008), T81–T90. Zbl1173.37016MR2422371
  9. [9] V. Baladi, Y. Jiang & H. H. Rugh, Dynamical determinants via dynamical conjugacies for postcritically finite polynomials. Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays, J. Statist. Phys. 108 (2002), 973–993. Zbl1124.37310MR1933441
  10. [10] V. Baladi & D. Smania, Linear response formula for piecewise expanding unimodal maps, Nonlinearity21 (2008), 677–711. Zbl1140.37008MR2399821
  11. [11] V. Baladi & D. Smania, Analyticity of the SRB measure for holomorphic families of quadratic-like Collet-Eckmann maps, Proc. Amer. Math. Soc.137 (2009), 1431–1437. Zbl1170.37016MR2465669
  12. [12] V. Baladi & D. Smania, Smooth deformations of piecewise expanding unimodal maps, Discrete Contin. Dyn. Syst.23 (2009), 685–703. Zbl1154.37340MR2461821
  13. [13] V. Baladi & D. Smania, Alternative proofs of linear response for piecewise expanding unimodal maps, Ergodic Theory and Dynam. Systems30 (2010), 1–20. Zbl1230.37030MR2586342
  14. [14] V. Baladi & D. Smania, Corrigendum to: Linear response formula for piecewise expanding unimodal maps, Nonlinearity25 (2012), 2203–2205. Zbl1244.37017MR2947942
  15. [15] V. Baladi & M. Viana, Strong stochastic stability and rate of mixing for unimodal maps, Ann. Sci. École Norm. Sup.29 (1996), 483–517. Zbl0868.58051MR1386223
  16. [16] M. Benedicks & L. Carleson, The dynamics of the Hénon map, Ann. of Math.133 (1991), 73–169. Zbl0724.58042MR1087346
  17. [17] H. Bruin, S. Luzzatto & S. Van Strien, Decay of correlations in one-dimensional dynamics, Ann. Sci. École Norm. Sup.36 (2003), 621–646. Zbl1039.37021MR2013929
  18. [18] H. Bruin, J. Rivera-Letelier, W. Shen & S. Van Strien, Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math.172 (2008), 509–533. Zbl1138.37019MR2393079
  19. [19] O. Butterley & C. Liverani, Smooth Anosov flows: correlation spectra and stability, J. Mod. Dyn.1 (2007), 301–322. Zbl1144.37011MR2285731
  20. [20] B. Cessac, Does the complex susceptibility of the Hénon map have a pole in the upper-half plane? A numerical investigation, Nonlinearity 20 (2007), 2883–2895. Zbl1134.37037MR2368329
  21. [21] D. Dolgopyat, On differentiability of SRB states for partially hyperbolic systems, Invent. Math.155 (2004), 389–449. Zbl1059.37021MR2031432
  22. [22] J. Graczyk, D. Sands & G. Świątek, La dérivée schwarzienne en dynamique unimodale, C. R. Acad. Sci. Paris Sér. I Math.332 (2001), 329–332. Zbl0983.37043
  23. [23] M. Hairer & A. J. Majda, A simple framework to justify linear response theory, Nonlinearity23 (2010), 909–922. Zbl1186.82006MR2602020
  24. [24] H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens, Proc. Amer. Math. Soc.118 (1993), 627–634. Zbl0772.60049MR1129880
  25. [25] A. Katok, G. Knieper, M. Pollicott & H. Weiss, Differentiability and analyticity of topological entropy for Anosov and geodesic flows, Invent. Math.98 (1989), 581–597. Zbl0702.58053MR1022308
  26. [26] G. Keller, Stochastic stability in some dynamical systems, Monatshefte Math.94 (1982), 313–333. Zbl0496.58010MR685377
  27. [27] G. Keller, Exponents, attractors and Hopf decompositions for interval maps, Ergodic Theory Dynam. Systems10 (1990), 717–744. Zbl0715.58020MR1091423
  28. [28] G. Keller, P. J. Howard & R. Klages, Continuity properties of transport coefficients in simple maps, Nonlinearity21 (2008), 1719–1743. Zbl1153.37331MR2425935
  29. [29] G. Keller & C. Liverani, Stability of the spectrum for transfer operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci.28 (1999), 141–152. Zbl0956.37003MR1679080
  30. [30] T. G. Keller & Nowicki, Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps, Comm. Math. Phys. 149 (1992), 633–680. Zbl0763.58024MR1182410
  31. [31] O. S. Kozlovski, Getting rid of the negative Schwarzian derivative condition, Ann. of Math.152 (2000), 743–762. Zbl0988.37044MR1815700
  32. [32] S. Luzzatto & L. Wang, Topological invariance of generic non-uniformly expanding multimodal maps, Math. Res. Lett.13 (2006), 343–357. Zbl1117.37024MR2231123
  33. [33] M. Martens, Distortion results and invariant Cantor sets of unimodal maps, Ergodic Theory Dynam. Systems14 (1994), 331–349. Zbl0809.58026MR1279474
  34. [34] M. Martens & W. de Melo, The multipliers of periodic points in one-dimensional dynamics, Nonlinearity12 (1999), 217–227. Zbl0989.37032MR1677736
  35. [35] M. Mazzolena, Dinamiche espansive unidimensionali: dipendenza della misura invariante da un parametro, Master’s Thesis, Roma 2 (2007). 
  36. [36] W. de Melo & S. van Strien, One-dimensional dynamics, Ergebnisse Math. Grenzg., Springer, 1993. Zbl0791.58003MR1239171
  37. [37] T. Nowicki, On some dynamical properties of S -unimodal maps on an interval, Fund. Math.126 (1985), 27–43. Zbl0608.58030MR817078
  38. [38] T. Nowicki, Symmetric S -unimodal mappings and positive Liapunov exponents, Ergodic Theory Dynam. Systems5 (1985), 611–616. Zbl0615.28009MR829861
  39. [39] T. Nowicki, Some dynamical properties of S -unimodal maps, Fund. Math.142 (1993), 45–57. Zbl0821.58025MR1207470
  40. [40] T. Nowicki & F. Przytycki, Topological invariance of the Collet-Eckmann property for S -unimodal maps, Fund. Math.155 (1998), 33–43. Zbl0898.58014MR1487986
  41. [41] T. Nowicki & D. Sands, Non-uniform hyperbolicity and universal bounds for S -unimodal maps, Invent. Math.132 (1998), 633–680. Zbl0908.58016MR1625708
  42. [42] T. Nowicki & S. van Strien, Hyperbolicity properties of C 2 multi-modal Collet-Eckmann maps without Schwarzian derivative assumptions, Trans. Amer. Math. Soc.321 (1990), 793–810. Zbl0731.58021MR994169
  43. [43] T. Nowicki & S. van Strien, Invariant measures exist under a summability condition for unimodal maps, Invent. Math.105 (1991), 123–136. Zbl0736.58030MR1109621
  44. [44] F. Przytycki & J. Rivera-Letelier, Statistical properties of topological Collet–Eckmann maps, Ann. Sci. École Norm. Sup.40 (2007), 135–178. Zbl1115.37048MR2332354
  45. [45] D. Ruelle, Differentiation of SRB states, Comm. Math. Phys.187 (1997), 227–241. Zbl0895.58045MR1463827
  46. [46] D. Ruelle, General linear response formula in statistical mechanics, and the fluctuation-dissipation theorem far from equilibrium, Phys. Lett. A245 (1998), 220–224. Zbl0940.82035MR1642617
  47. [47] D. Ruelle, Differentiation of SRB states: Corrections and complements, Comm. Math. Phys.234 (2003), 185–190. Zbl1019.37014MR1963142
  48. [48] D. Ruelle, Application of hyperbolic dynamics to physics: some problems and conjectures, Bull. Amer. Math. Soc.41 (2004), 275–278. Zbl1102.37051MR2058287
  49. [49] D. Ruelle, Differentiating the absolutely continuous invariant measure of an interval map f with respect to f , Comm. Math. Phys.258 (2005), 445–453. Zbl1080.37046MR2171702
  50. [50] D. Ruelle, A review of linear response theory for general differentiable dynamical systems, Nonlinearity22 (2009), 855–870. Zbl1158.37305MR2486360
  51. [51] D. Ruelle, Structure and f -dependence of the A.C.I.M. for a unimodal map f of Misiurewicz type, Comm. Math. Phys. 287 (2009), 1039–1070. Zbl1202.37008MR2486672
  52. [52] D. Ruelle, Private communication by e-mail, 29 November 2009. 
  53. [53] M. Rychlik & E. Sorets, Regularity and other properties of absolutely continuous invariant measures for the quadratic family, Comm. Math. Phys.150 (1992), 217–236. Zbl0770.58021MR1194016
  54. [54] D. Sands, Topological conditions for positive Lyapunov exponent in unimodal maps, Thèse, St John’s College, 1994. 
  55. [55] S. van Strien, One-parameter families of smooth interval maps, density of hyperbolicity and robust chaos, Proc. Amer. Math. Soc.138 (2010), 4443–4446. Zbl1230.37049MR2680068
  56. [56] P. Thieullen, C. Tresser & L.-S. Young, Positive Lyapunov exponent for generic one-parameter families of unimodal maps, J. d’Anal. Math. 64 (1994), 121–172. Zbl0821.58015MR1303510
  57. [57] M. Tsujii, Positive Lyapunov exponents in families of one-dimensional dynamical systems, Invent. Math.111 (1993), 113–137. Zbl0787.58029MR1193600
  58. [58] M. Tsujii, On continuity of Bowen-Ruelle-Sinai measures in families of one-dimensional maps, Comm. Math. Phys.177 (1996), 1–11. Zbl0856.58027MR1382217
  59. [59] M. Viana, Stochastic dynamics of deterministic systems, 1997, 21 Colóquio Brasileiro de Matemática, IMPA, Rio de Janeiro (1997), available on http://w3.impa.br/~viana (under Lecture Notes). 
  60. [60] L. Wang, Topological and metrical conditions for Collet-Eckmann unimodal maps, Acta Math. Appl. Sinica (English Ser.) 17 (2001), 350–360. Zbl1154.37342MR1877281
  61. [61] L.-S. Young, Decay of correlations for certain quadratic maps, Comm. Math. Phys.146 (1992), 123–138. Zbl0760.58030MR1163671
  62. [62] L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math.147 (1998), 585–650. Zbl0945.37009MR1637655
  63. [63] L.-S. Young, What are SRB measures, and which dynamical systems have them? Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthday, J. Statist. Phys. 108 (2002), 733–754. Zbl1124.37307MR1933431

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.