Vortex filament dynamics for Gross-Pitaevsky type equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)
- Volume: 1, Issue: 4, page 733-768
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topJerrard, Robert L.. "Vortex filament dynamics for Gross-Pitaevsky type equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.4 (2002): 733-768. <http://eudml.org/doc/84485>.
@article{Jerrard2002,
abstract = {We study solutions of the Gross-Pitaevsky equation and similar equations in $m\ge 3$ space dimensions in a certain scaling limit, with initial data $u_0^\epsilon $ for which the jacobian $Ju_0^\epsilon $ concentrates around an (oriented) rectifiable $m-2$ dimensional set, say $\Gamma _0$, of finite measure. It is widely conjectured that under these conditions, the jacobian at later times $t>0$ continues to concentrate around some codimension $2$ submanifold, say $\Gamma _t$, and that the family $\lbrace \Gamma _t \rbrace $ of submanifolds evolves by binormal mean curvature flow. We prove this conjecture when $\Gamma _0$ is a round $m-2$-dimensional sphere with multiplicity $1$. We also prove a number of partial results for more general inital data.},
author = {Jerrard, Robert L.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {733-768},
publisher = {Scuola normale superiore},
title = {Vortex filament dynamics for Gross-Pitaevsky type equations},
url = {http://eudml.org/doc/84485},
volume = {1},
year = {2002},
}
TY - JOUR
AU - Jerrard, Robert L.
TI - Vortex filament dynamics for Gross-Pitaevsky type equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 4
SP - 733
EP - 768
AB - We study solutions of the Gross-Pitaevsky equation and similar equations in $m\ge 3$ space dimensions in a certain scaling limit, with initial data $u_0^\epsilon $ for which the jacobian $Ju_0^\epsilon $ concentrates around an (oriented) rectifiable $m-2$ dimensional set, say $\Gamma _0$, of finite measure. It is widely conjectured that under these conditions, the jacobian at later times $t>0$ continues to concentrate around some codimension $2$ submanifold, say $\Gamma _t$, and that the family $\lbrace \Gamma _t \rbrace $ of submanifolds evolves by binormal mean curvature flow. We prove this conjecture when $\Gamma _0$ is a round $m-2$-dimensional sphere with multiplicity $1$. We also prove a number of partial results for more general inital data.
LA - eng
UR - http://eudml.org/doc/84485
ER -
References
top- [1] G. Alberti – S. Baldo – G. Orlandi, in preparation.
- [2] F. Almgren, Optimal isoperimetric inequalities, Indiana Univ. Math. J. 35 (1986), no. 3, 451-547. Zbl0585.49030MR855173
- [3] L. Ambrosio – H. M. Soner, A measure theoretic approach to higher codimension mean curvature flow, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 25 (1997), 27-48. Zbl1043.35136MR1655508
- [4] F. Bethuel – J.-C. Saut, Travelling waves for the Gross-Pitaevsky equation i, Ann. Inst. H. Poincaré Phys. Théor. 70 (1999), no. 2, 147-238. Zbl0933.35177MR1669387
- [5] J. E. Colliander –d R. L. Jerrard, Vortex dynamics for the Ginzburg-Landau-Schrödinger equation, IMRN 1998 (1998), 333-358. Zbl0914.35128MR1623410
- [6] J. E. Colliander –d R. L. Jerrard, Ginzburg-Landau vortices: weak stability and Schrödinger equation dynamics, Journal d’Analyse Mathematique 77 (1999), 129-205. Zbl0933.35155MR1753485
- [7] W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity, Physica D 77 (1994), 383-404. Zbl0814.34039MR1297726
- [8] A. L. Fetter, Vortices in an Imperfect Bose Gas. I. the Condensate, Physical Review 138 (1965), no. 2A, A429-A437. Zbl0127.23103MR186223
- [9] M. Giaquinta – G. Modica – J. Souček, “Cartesian currents in the calculus of variations. I. Cartesian currents”, Springer-Verlag, 1998. Zbl0914.49001MR1645086
- [10] R. L. Jerrard – H. M. Soner, Functions of bounded higher variation, to appear, Calc. Var. Zbl1057.49036MR1911049
- [11] R. L. Jerrard – H. M. Soner, The Jacobian and the Ginzburg-Landau energy, to appear, Indiana Univ. Math. Jour. Zbl1034.35025MR1890398
- [12] R. L. Jerrard – H. M. Soner, Rectifiability of the distributional Jacobian for a class of functions, C.R. Acad. Sci. Paris, Série I 329 (1999), 683-688. Zbl0946.49033MR1724082
- [13] R. L. Jerrard – H. M. Soner, Scaling limits and regularity results for a class of Ginzburg-Landau systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999), no. 4, 423-466. Zbl0944.35006MR1697561
- [14] F. H. Lin, Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension 2 submanifolds, Comm. Pure Appl. Math. 51 (1998), no. 4, 385-441. Zbl0932.35121MR1491752
- [15] F. H. Lin – J. X. Xin, On the incompressible fluid limit and the vortex law of motion of the nonlinear Schrödinger equation, Comm. Math. Phys. 200 (1999), 249-274. Zbl0920.35145MR1674000
- [16] T. C. Lin, On the stability of the radial solution to the Ginzburg-Landau equation, Comm. Partial Differential Equations 22 (1997), no. 3-4, 619-632. Zbl0877.35018MR1443051
- [17] T. C. Lin, Rigorous and generalized derivation of vortex line dynamics in superfluids and superconductors, SIAM J. Appl. Math. 60 (2000), no. 3, 1099-1110. Zbl1017.82046MR1750093
- [18] F. Lund, Defect dynamics for the nonlinear Schrödinger equation derived from a variational principle, Physics Letters A 159 (1991), 245-251. MR1133125
- [19] L. M. Pismen – J. Rubinstein, Motion of vortex lines in the Ginzburg-Landau model, Physica D 47 (1991), 353-360. Zbl0728.35090MR1098255
- [20] E. Sandier, Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal. 152 (1998), no. 2, 379-403. Zbl0908.58004MR1607928
- [21] L. Simon, “Lectures on geometric measure theory”, Australian National University, 1984. Zbl0546.49019MR756417
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.