Regularity results for semilinear and geometric wave equations

Jalal Shatah

Banach Center Publications (1997)

  • Volume: 41, Issue: 1, page 69-90
  • ISSN: 0137-6934

How to cite


Shatah, Jalal. "Regularity results for semilinear and geometric wave equations." Banach Center Publications 41.1 (1997): 69-90. <>.

author = {Shatah, Jalal},
journal = {Banach Center Publications},
keywords = {optimal regularity results; blow-up results},
language = {eng},
number = {1},
pages = {69-90},
title = {Regularity results for semilinear and geometric wave equations},
url = {},
volume = {41},
year = {1997},

AU - Shatah, Jalal
TI - Regularity results for semilinear and geometric wave equations
JO - Banach Center Publications
PY - 1997
VL - 41
IS - 1
SP - 69
EP - 90
LA - eng
KW - optimal regularity results; blow-up results
UR -
ER -


  1. [1] J. Bergh and J. Löfström, Interpolation Spaces. Grundlehren 223, Springer-Verlag, 1976. Zbl0344.46071
  2. [2] P. Brenner and W. von Wahl, Global classical solutions of nonlinear wave equations, Math. Z., 176:87-121, 1981. Zbl0457.35059
  3. [3] T. Cazenave, J. Shatah, and A. Tahvildar-Zadeh, Harmonic maps of the hyperbolic space and development of singularities for wave maps and Yang-Mills fields, preprint, 1995. Zbl0918.58074
  4. [4] J. Ginibre and G. Velo, The Cauchy problem for the O(N), ℂP(N-1) and Gℂ(N,P) models, Ann. Physics, 142:393-415, 1982. Zbl0512.58018
  5. [5] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z., 189:487-505, 1985. Zbl0549.35108
  6. [6] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation revised, Ann. Inst. H. Poincaré, Analyse Non Linéaire, 6:15-35, 1989. Zbl0694.35153
  7. [7] M. Grillakis, Regularity and asymptotic behavior of the wave equation with a critical nonlinearity, Ann. of Math., 132:485-509, 1990. Zbl0736.35067
  8. [8] M. Grillakis, Classical solutions for the equivariant wave map in 1+2-dimensions, preprint, 1991. 
  9. [9] M. Grillakis, A priori estimates and regularity for nonlinear waves, Communication at ICM 94, Zurich, 1994. 
  10. [10] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Math. Lib., volume 18. North-Holland, 1978. Zbl0387.46033
  11. [11] K. Jörgens, Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen, Math. Zeit., 77:295-308, 1961. Zbl0111.09105
  12. [12] L. Kapitanski, Global and unique weak solutions of nonlinear wave equations, Math. Res. Lett., 1:211-223, 1994. Zbl0841.35067
  13. [13] S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications, Duke Math. Jour., 81:99-133, 1995. Zbl0909.35094
  14. [14] H. Lindblad and C. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Func. Anal., 130:357-426, 1995. Zbl0846.35085
  15. [15] B. Marshall, W. Strauss, and S. Wainger, L p - L q estimates for the Klein-Gordon equation, J. Math. Pures et Appl., 59:417-440, 1980. Zbl0457.47040
  16. [16] H. Pecher, L p -Abschätzungen und klassische Lösungen für nichtlineare Wellegleichungen, I, Math. Z., 150:151-183, 1976. 
  17. [17] G. Ponce and T. Sideris, Local regularity of nonlinear wave equations in threee space dimensions, Comm. Partial Diff. Eq., 18:169-177, 1993. Zbl0803.35096
  18. [18] J. Rauch, I. The u 5 Klein-Gordon equation. II. Anomalous singularities for semilinear wave equations, in H. Brézis and J. L. Lions, editors, Nonlinear Partial Differential Equations and Their Applications, volume 53, pages 335-364. Pitman, 1981. 
  19. [19] I. Segal, Nonlinear Semi Groups, Ann. Math., 78:339-364, 1963. Zbl0204.16004
  20. [20] J. Shatah and M. Struwe, Regularity results for nonlinear wave equations, Ann. Math., 138:503-518, 1993. Zbl0836.35096
  21. [21] J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, IMRN, 7:303-309, 1994. Zbl0830.35086
  22. [22] J. Shatah and A. Tahvildar-Zadeh, Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds, Comm. Pure Appl. Math., XLV:947-971, 1992. Zbl0769.58015
  23. [23] J. Shatah and A. Tahvildar-Zadeh, On the Cauchy problem for equivariant wave maps, Comm. Pure Appl. Math, 47:719-754, 1994. Zbl0811.58059
  24. [24] W. Strauss, Nonlinear invariant wave equations, in G. Velo and A. S. Wightman, editors, Invariant Wave Equations, pages 197-249. Springer-Verlag, Berlin, 1978. 
  25. [25] W. Strauss, Nonlinear Scattering Theory at Low Energy, J. Funct. Anal., 41:110-133, 1981. Zbl0466.47006
  26. [26] R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44:705-714, 1977. Zbl0372.35001
  27. [27] M. Struwe, Globally regular solutions to the u 5 Klein-Gordon equation, Annali Sc. Norm. Sup. Pisa (Ser. 4), 15:495-513, 1988. 
  28. [28] M. Struwe, Geometric Evolution Problems, Park City Geom. Ser. of the Amer. Math. Soc., Providence, R.I., 1992. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.