Regularity results for semilinear and geometric wave equations
Banach Center Publications (1997)
- Volume: 41, Issue: 1, page 69-90
- ISSN: 0137-6934
Access Full Article
topHow to cite
topShatah, Jalal. "Regularity results for semilinear and geometric wave equations." Banach Center Publications 41.1 (1997): 69-90. <http://eudml.org/doc/252230>.
@article{Shatah1997,
author = {Shatah, Jalal},
journal = {Banach Center Publications},
keywords = {optimal regularity results; blow-up results},
language = {eng},
number = {1},
pages = {69-90},
title = {Regularity results for semilinear and geometric wave equations},
url = {http://eudml.org/doc/252230},
volume = {41},
year = {1997},
}
TY - JOUR
AU - Shatah, Jalal
TI - Regularity results for semilinear and geometric wave equations
JO - Banach Center Publications
PY - 1997
VL - 41
IS - 1
SP - 69
EP - 90
LA - eng
KW - optimal regularity results; blow-up results
UR - http://eudml.org/doc/252230
ER -
References
top- [1] J. Bergh and J. Löfström, Interpolation Spaces. Grundlehren 223, Springer-Verlag, 1976. Zbl0344.46071
- [2] P. Brenner and W. von Wahl, Global classical solutions of nonlinear wave equations, Math. Z., 176:87-121, 1981. Zbl0457.35059
- [3] T. Cazenave, J. Shatah, and A. Tahvildar-Zadeh, Harmonic maps of the hyperbolic space and development of singularities for wave maps and Yang-Mills fields, preprint, 1995. Zbl0918.58074
- [4] J. Ginibre and G. Velo, The Cauchy problem for the O(N), ℂP(N-1) and Gℂ(N,P) models, Ann. Physics, 142:393-415, 1982. Zbl0512.58018
- [5] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z., 189:487-505, 1985. Zbl0549.35108
- [6] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation revised, Ann. Inst. H. Poincaré, Analyse Non Linéaire, 6:15-35, 1989. Zbl0694.35153
- [7] M. Grillakis, Regularity and asymptotic behavior of the wave equation with a critical nonlinearity, Ann. of Math., 132:485-509, 1990. Zbl0736.35067
- [8] M. Grillakis, Classical solutions for the equivariant wave map in 1+2-dimensions, preprint, 1991.
- [9] M. Grillakis, A priori estimates and regularity for nonlinear waves, Communication at ICM 94, Zurich, 1994.
- [10] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Math. Lib., volume 18. North-Holland, 1978. Zbl0387.46033
- [11] K. Jörgens, Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen, Math. Zeit., 77:295-308, 1961. Zbl0111.09105
- [12] L. Kapitanski, Global and unique weak solutions of nonlinear wave equations, Math. Res. Lett., 1:211-223, 1994. Zbl0841.35067
- [13] S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications, Duke Math. Jour., 81:99-133, 1995. Zbl0909.35094
- [14] H. Lindblad and C. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Func. Anal., 130:357-426, 1995. Zbl0846.35085
- [15] B. Marshall, W. Strauss, and S. Wainger, estimates for the Klein-Gordon equation, J. Math. Pures et Appl., 59:417-440, 1980. Zbl0457.47040
- [16] H. Pecher, -Abschätzungen und klassische Lösungen für nichtlineare Wellegleichungen, I, Math. Z., 150:151-183, 1976.
- [17] G. Ponce and T. Sideris, Local regularity of nonlinear wave equations in threee space dimensions, Comm. Partial Diff. Eq., 18:169-177, 1993. Zbl0803.35096
- [18] J. Rauch, I. The Klein-Gordon equation. II. Anomalous singularities for semilinear wave equations, in H. Brézis and J. L. Lions, editors, Nonlinear Partial Differential Equations and Their Applications, volume 53, pages 335-364. Pitman, 1981.
- [19] I. Segal, Nonlinear Semi Groups, Ann. Math., 78:339-364, 1963. Zbl0204.16004
- [20] J. Shatah and M. Struwe, Regularity results for nonlinear wave equations, Ann. Math., 138:503-518, 1993. Zbl0836.35096
- [21] J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, IMRN, 7:303-309, 1994. Zbl0830.35086
- [22] J. Shatah and A. Tahvildar-Zadeh, Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds, Comm. Pure Appl. Math., XLV:947-971, 1992. Zbl0769.58015
- [23] J. Shatah and A. Tahvildar-Zadeh, On the Cauchy problem for equivariant wave maps, Comm. Pure Appl. Math, 47:719-754, 1994. Zbl0811.58059
- [24] W. Strauss, Nonlinear invariant wave equations, in G. Velo and A. S. Wightman, editors, Invariant Wave Equations, pages 197-249. Springer-Verlag, Berlin, 1978.
- [25] W. Strauss, Nonlinear Scattering Theory at Low Energy, J. Funct. Anal., 41:110-133, 1981. Zbl0466.47006
- [26] R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44:705-714, 1977. Zbl0372.35001
- [27] M. Struwe, Globally regular solutions to the Klein-Gordon equation, Annali Sc. Norm. Sup. Pisa (Ser. 4), 15:495-513, 1988.
- [28] M. Struwe, Geometric Evolution Problems, Park City Geom. Ser. of the Amer. Math. Soc., Providence, R.I., 1992.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.