Quasi-lines and their degenerations

Laurent Bonavero; Andreas Höring

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)

  • Volume: 6, Issue: 3, page 359-383
  • ISSN: 0391-173X

Abstract

top
In this paper we study the structure of manifolds that contain a quasi-line and give some evidence towards the fact that the irreducible components of degenerations of the quasi-line should determine the Mori cone. We show that the minimality with respect to a quasi-line yields strong restrictions on fibre space structures of the manifold.

How to cite

top

Bonavero, Laurent, and Höring, Andreas. "Quasi-lines and their degenerations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.3 (2007): 359-383. <http://eudml.org/doc/272270>.

@article{Bonavero2007,
abstract = {In this paper we study the structure of manifolds that contain a quasi-line and give some evidence towards the fact that the irreducible components of degenerations of the quasi-line should determine the Mori cone. We show that the minimality with respect to a quasi-line yields strong restrictions on fibre space structures of the manifold.},
author = {Bonavero, Laurent, Höring, Andreas},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {359-383},
publisher = {Scuola Normale Superiore, Pisa},
title = {Quasi-lines and their degenerations},
url = {http://eudml.org/doc/272270},
volume = {6},
year = {2007},
}

TY - JOUR
AU - Bonavero, Laurent
AU - Höring, Andreas
TI - Quasi-lines and their degenerations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 3
SP - 359
EP - 383
AB - In this paper we study the structure of manifolds that contain a quasi-line and give some evidence towards the fact that the irreducible components of degenerations of the quasi-line should determine the Mori cone. We show that the minimality with respect to a quasi-line yields strong restrictions on fibre space structures of the manifold.
LA - eng
UR - http://eudml.org/doc/272270
ER -

References

top
  1. [1] T. Ando, On extremal rays of the higher-dimensional varieties, Invent. Math.81 (1985), 347–357. Zbl0554.14001MR799271
  2. [2] V. Ancona, T. Peternell and J. A. Wiśniewski, Fano bundles and splitting theorems on projective spaces and quadrics, Pacific J. Math.163 (1994), 17–42. Zbl0808.14013MR1256175
  3. [3] L. B ădescu, M. C. Beltrametti and P. Ionescu, Almost-lines and quasi-lines on projective manifolds, In: “Complex analysis and algebraic geometry”, de Gruyter, Berlin, 2000, 1–27. Zbl1078.14010MR1760869
  4. [4] K. Cho, Y. Miyaoka and N. I. Shepherd-Barron, Characterizations of projective space and applications to complex symplectic manifolds, In: “Higher dimensional birational geometry” (Kyoto, 1997), Adv. Stud. Pure Math., Vol. 35, Math. Soc. Japan, Tokyo, 2002, 1–88. Zbl1063.14065MR1929792
  5. [5] O. Debarre, “Higher-Dimensional Algebraic Geometry”, Universitext, Springer-Verlag, New York, 2001. Zbl0978.14001MR1841091
  6. [6] T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive, In: “Algebraic geometry” (Sendai, 1985), Adv. Stud. Pure Math., Vol. 10, North-Holland, Amsterdam, 1987, 167–178. Zbl0659.14002MR946238
  7. [7] R. Hartshorne, Varieties of small codimension in projective space, Bull. Amer. Math. Soc.80 (1974), 1017–1032. Zbl0304.14005MR384816
  8. [8] R. Hartshorne, “Algebraic Geometry”, Graduate Texts in Mathematics, Vol. 52. Springer-Verlag, New York, 1977. Zbl0367.14001MR463157
  9. [9] R. Hartshorne, Stable vector bundles of rank 2 on 𝐏 3 , Math. Ann.238 (1978), 229–280. Zbl0411.14002MR514430
  10. [10] N. J. Hitchin, Kählerian twistor spaces, Proc. London Math. Soc.43 (1981), 133–150. Zbl0474.14024MR623721
  11. [11] P. Ionescu and D. Naie, Rationality properties of manifolds containing quasi-lines, Internat. J. Math.14 (2003), 1053–1080. Zbl1080.14512MR2031183
  12. [12] P. Ionescu and C. Voica, Models of rationally connected manifolds, J. Math. Soc. Japan55 (2003), 143–164. Zbl1084.14052MR1939190
  13. [13] S. Kebekus, Characterizing the projective space after Cho, Miyaoka and Shepherd-Barron, In: “Complex geometry” (Göttingen, 2000), Springer, Berlin, 2002, 147–155. Zbl1046.14028MR1922103
  14. [14] Kawamata, Yujiro, Matsuda, Katsumi and Matsuki, Kenji, Introduction to the minimal model problem, In: “Algebraic Geometry” (Sendai, 1985), Adv. Stud. Pure Math., Vol. 10, North-Holland, Amsterdam, 1987, 283–360. Zbl0672.14006MR946243
  15. [15] J. Kollár, “Rational Curves on Algebraic Varieties”, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics, Vol. 32, Springer-Verlag, Berlin, 1996. Zbl0877.14012MR1440180
  16. [16] S. Mori and S. Mukai, Classification of Fano 3 -folds with B 2 2 , Manuscripta Math. 36 (1981/82), 147–162. Zbl0478.14033MR641971
  17. [17] S. Mori and S. Mukai, On Fano 3 -folds with B 2 2 , In: “Algebraic varieties and analytic varieties” (Tokyo, 1981), Adv. Stud. Pure Math. Vol. 1, North-Holland, Amsterdam, 1983, 101–129. Zbl0537.14026MR715648
  18. [18] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math.116 (1982), 133–176. Zbl0557.14021MR662120
  19. [19] C. Okonek, M. Schneider and H. Spindler, “Vector Bundles on Complex Projective Spaces”, Progress in Mathematics, Vol. 3, Birkhäuser Boston, Mass., 1980. Zbl0438.32016MR561910
  20. [20] W. M. Oxbury, Twistor spaces and Fano threefolds, Quart. J. Math. Oxford Ser.45 (1994), 343–366. Zbl0817.14019MR1295581
  21. [21] M. Szurek and J. A. Wiśniewski, Fano bundles over 𝐏 3 and Q 3 , Pacific J. Math.141 (1990), 197–208. Zbl0705.14016MR1028270
  22. [22] M. Szurek and J. A. Wiśniewski, On Fano manifolds, which are 𝐏 k -bundles over 𝐏 2 , Nagoya Math. J.120 (1990), 89–101. Zbl0728.14037MR1086572
  23. [23] J. A. Wiśniewski, On contractions of extremal rays of Fano manifolds, J. Reine Angew. Math.417 (1991), 141–157. Zbl0721.14023MR1103910

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.