Extensions of the Cugiani-Mahler theorem

Yann Bugeaud

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)

  • Volume: 6, Issue: 3, page 477-498
  • ISSN: 0391-173X

Abstract

top
In 1955, Roth established that if is an irrational number such that there are a positive real number and infinitely many rational numbers with and , then is transcendental. A few years later, Cugiani obtained the same conclusion with replaced by a function that decreases very slowly to zero, provided that the sequence of rational solutions to is sufficiently dense, in a suitable sense. We give an alternative, and much simpler, proof of Cugiani’s Theorem and extend it to simultaneous approximation.

How to cite

top

Bugeaud, Yann. "Extensions of the Cugiani-Mahler theorem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.3 (2007): 477-498. <http://eudml.org/doc/272286>.

@article{Bugeaud2007,
abstract = {In 1955, Roth established that if $\xi $ is an irrational number such that there are a positive real number $\varepsilon $ and infinitely many rational numbers $p/q$ with $q \ge 1$ and $|\xi - p/q| &lt; q^\{-2-\varepsilon \}$, then $\xi $ is transcendental. A few years later, Cugiani obtained the same conclusion with $\varepsilon $ replaced by a function $q \mapsto \varepsilon (q)$ that decreases very slowly to zero, provided that the sequence of rational solutions to $|\xi - p/q| &lt; q^\{-2-\varepsilon (q)\}$ is sufficiently dense, in a suitable sense. We give an alternative, and much simpler, proof of Cugiani’s Theorem and extend it to simultaneous approximation.},
author = {Bugeaud, Yann},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {477-498},
publisher = {Scuola Normale Superiore, Pisa},
title = {Extensions of the Cugiani-Mahler theorem},
url = {http://eudml.org/doc/272286},
volume = {6},
year = {2007},
}

TY - JOUR
AU - Bugeaud, Yann
TI - Extensions of the Cugiani-Mahler theorem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 3
SP - 477
EP - 498
AB - In 1955, Roth established that if $\xi $ is an irrational number such that there are a positive real number $\varepsilon $ and infinitely many rational numbers $p/q$ with $q \ge 1$ and $|\xi - p/q| &lt; q^{-2-\varepsilon }$, then $\xi $ is transcendental. A few years later, Cugiani obtained the same conclusion with $\varepsilon $ replaced by a function $q \mapsto \varepsilon (q)$ that decreases very slowly to zero, provided that the sequence of rational solutions to $|\xi - p/q| &lt; q^{-2-\varepsilon (q)}$ is sufficiently dense, in a suitable sense. We give an alternative, and much simpler, proof of Cugiani’s Theorem and extend it to simultaneous approximation.
LA - eng
UR - http://eudml.org/doc/272286
ER -

References

top
  1. [1] B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers, II. Continued fractions, Acta Math. 195 (2005), 1–20. Zbl1195.11093MR2233683
  2. [2] B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers I. Expansions in integer bases, Ann. of Math. 165 (2007), 547–565. Zbl1195.11094MR2299740
  3. [3] B. Adamczewski, Y. Bugeaud et F. Luca, Sur la complexité des nombres algébriques, C. R. Acad. Sci. Paris339 (2004), 11–14. Zbl1119.11019MR2075225
  4. [4] J.-P. Allouche, Nouveaux résultats de transcendance de réels à développements non aléatoire, Gaz. Math.84 (2000), 19–34. MR1766087
  5. [5] V. Beresnevich, On approximation of real numbers by real algebraic numbers, Acta Arith.90 (1999), 97–112. Zbl0937.11027MR1709049
  6. [6] V. I. Bernik, On the best approximation of zero by values of integral polynomials, Acta Arith. 53 (1989), 17–28 (in Russian). Zbl0692.10042MR1045454
  7. [7] E. Bombieri and W. Gubler, “Heights in Diophantine Geometry”, New mathematical monographs 4, Cambridge University Press, 2006. Zbl1115.11034MR2216774
  8. [8] E. Bombieri and A. J. van der Poorten, Some quantitative results related to Roth’s theorem, J. Aust. Math. Soc.45 (1988), 233–248. Zbl0664.10017MR951583
  9. [9] Y. Bugeaud and J.-H. Evertse, On two notions of complexity of algebraic numbers, preprint available at http://arxiv.org/pdf/0709.1560. Zbl1236.11062MR2434602
  10. [10] M. Cugiani, Sull’approssimazione di numeri algebrici mediante razionali, In: “Collectanea Mathematica”, Pubblicazioni dell’Istituto di Matematica dell’Università di Milano 169, C. Tanburini (ed.), Milano, 1958, pages 5. 
  11. [11] M. Cugiani, Sulla approssimabilità dei numeri algebrici mediante numeri razionali, Ann. Mat. Pura Appl.48 (1959), 135–145. Zbl0093.05402MR112880
  12. [12] M. Cugiani, Sull’approssimabilità di un numero algebrico mediante numeri algebrici di un corpo assegnato, Boll. Unione Mat. Ital.14 (1959), 151–162. Zbl0086.26402MR117220
  13. [13] H. Davenport and K. F. Roth, Rational approximations to algebraic numbers, Mathematika2 (1955), 160–167. Zbl0066.29302MR77577
  14. [14] J.-H. Evertse, The number of algebraic numbers of given degree approximating a given algebraic number. In: “Analytic Number Theory” (Kyoto, 1996), London Math. Soc. Lecture Note Ser. 247, Cambridge Univ. Press, Cambridge, 1997, 53–83. Zbl0919.11048MR1694985
  15. [15] J.-H. Evertse and H.P. Schlickewei, A quantitative version of the Absolute Subspace Theorem, J. Reine Angew. Math.548 (2002), 21–127. Zbl1026.11060MR1915209
  16. [16] P. Fatou, Sur l’approximation des incommensurables et des séries trigonométriques, C. R. Acad. Sci. Paris139 (1904), 1019–1021. Zbl35.0275.02JFM35.0275.02
  17. [17] S. Ferenczi and Ch. Mauduit, Transcendence of numbers with a low complexity expansion, J. Number Theory67 (1997), 146–161. Zbl0895.11029MR1486494
  18. [18] J. H. Grace, The classification of rational approximations, Proc. London Math. Soc.17 (1918), 247–258. Zbl47.0166.01MR1575573JFM47.0166.01
  19. [19] H. Locher, On the number of good approximations of algebraic numbers by algebraic numbers of bounded degree, Acta Arith.89 (1999), 97–122. Zbl0938.11035MR1691894
  20. [20] K. Mahler, On the fractional parts of the powers of a rational number, II, Mathematika4 (1957), 122–124. Zbl0208.31002MR93509
  21. [21] K. Mahler, “Lectures on Diophantine Approximation, Part 1: -Adic Numbers and Roth’s Theorem”, University of Notre Dame, Ann Arbor, 1961. Zbl0158.29903MR142509
  22. [22] M. Mignotte, Une généralisation d’un théorème de Cugiani–Mahler, Acta Arith.22 (1972), 57–67. Zbl0244.10029MR313196
  23. [23] D. Ridout, Rational approximations to algebraic numbers, Mathematika4 (1957), 125–131. Zbl0079.27401MR93508
  24. [24] G. Rodriquez, Approssimabilità di irrazionali -adici mediante numeri razionali, Ist. Lombardo Accad. Sci. Lett. Rend. A98 (1964), 691–708. Zbl0133.30103MR179133
  25. [25] G. Rodriquez, Approssimabilità di irrazionali -adici mediante numeri razionali. II, Boll. Unione Mat. Ital. 20 (1965), 232–244. Zbl0154.04704MR211957
  26. [26] K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1–20; corrigendum, 168. Zbl0064.28501MR72182
  27. [27] W. M. Schmidt, Über simultane Approximation algebraischer Zahlen durch Rationale, Acta Math.114 (1965) 159–206. Zbl0136.33802MR177948
  28. [28] W. M. Schmidt, On simultaneous approximations of two algebraic numbers by rationals, Acta Math.119 (1967), 27–50. Zbl0173.04801MR223309
  29. [29] W. M. Schmidt, Simultaneous approximations to algebraic numbers by rationals, Acta Math.125 (1970), 189–201. Zbl0205.06702MR268129
  30. [30] W. M. Schmidt, Norm form equations, Ann. of Math.96 (1972), 526–551. Zbl0226.10024MR314761
  31. [31] W. M. Schmidt, “Diophantine Approximation”, Lecture Notes in Mathematics, Vol. 785, Springer, 1980. Zbl0421.10019MR568710
  32. [32] W. M. Schmidt, The subspace theorem in Diophantine approximation, Compositio Math.69 (1989), 121–173. Zbl0683.10027MR984633
  33. [33] K. B. Stolarsky, “Algebraic numbers and Diophantine Approximation”, Pure and Applied Mathematics, Vol. 26, Marcel Dekker, Inc., New York, 1974. Zbl0285.10022MR374041
  34. [34] M. Waldschmidt, “Diophantine Approximation on Linear Algebraic Groups, Transcendence Properties of the Exponential Function in Several Variables”, Grundlehren der Mathematischen Wissenschaften, Vol. 326, Springer–Verlag, Berlin, 2000. Zbl0944.11024MR1756786

NotesEmbed ?

top

You must be logged in to post comments.