Quantitative versions of the Subspace Theorem and applications

Yann Bugeaud[1]

  • [1] Université de Strasbourg Mathématiques 7, rue René Descartes 67084 Strasbourg Cedex (France)

Journal de Théorie des Nombres de Bordeaux (2011)

  • Volume: 23, Issue: 1, page 35-57
  • ISSN: 1246-7405

Abstract

top
During the last decade, several quite unexpected applications of the Schmidt Subspace Theorem were found. We survey some of these, with a special emphasize on the consequences of quantitative statements of this theorem, in particular regarding transcendence questions.

How to cite

top

Bugeaud, Yann. "Quantitative versions of the Subspace Theorem and applications." Journal de Théorie des Nombres de Bordeaux 23.1 (2011): 35-57. <http://eudml.org/doc/219672>.

@article{Bugeaud2011,
abstract = {During the last decade, several quite unexpected applications of the Schmidt Subspace Theorem were found. We survey some of these, with a special emphasize on the consequences of quantitative statements of this theorem, in particular regarding transcendence questions.},
affiliation = {Université de Strasbourg Mathématiques 7, rue René Descartes 67084 Strasbourg Cedex (France)},
author = {Bugeaud, Yann},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Roth theorem; subspace theorem; quantitative subspace theorem; approximation of algebraic numbers by algebraic numbers; norm form equations; unit equations},
language = {eng},
month = {3},
number = {1},
pages = {35-57},
publisher = {Société Arithmétique de Bordeaux},
title = {Quantitative versions of the Subspace Theorem and applications},
url = {http://eudml.org/doc/219672},
volume = {23},
year = {2011},
}

TY - JOUR
AU - Bugeaud, Yann
TI - Quantitative versions of the Subspace Theorem and applications
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/3//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 1
SP - 35
EP - 57
AB - During the last decade, several quite unexpected applications of the Schmidt Subspace Theorem were found. We survey some of these, with a special emphasize on the consequences of quantitative statements of this theorem, in particular regarding transcendence questions.
LA - eng
KW - Roth theorem; subspace theorem; quantitative subspace theorem; approximation of algebraic numbers by algebraic numbers; norm form equations; unit equations
UR - http://eudml.org/doc/219672
ER -

References

top
  1. B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers, II. Continued fractions, Acta Math. 195 (2005), 1–20. Zbl1195.11093MR2233683
  2. B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers I. Expansions in integer bases. Ann. of Math. 165 (2007), 547–565. Zbl1195.11094MR2299740
  3. B. Adamczewski and Y. Bugeaud, On the Maillet–Baker continued fractions. J. reine angew. Math. 606 (2007), 105–121. Zbl1145.11054MR2337643
  4. B. Adamczewski and Y. Bugeaud, Palindromic continued fractions. Ann. Inst. Fourier (Grenoble) 57 (2007), 1557–1574. Zbl1126.11036MR2364142
  5. B. Adamczewski et Y. Bugeaud, Mesures de transcendance et aspects quantitatifs de la méthode de Thue–Siegel–Roth–Schmidt. Proc. London Math. Soc. 101 (2010), 1–31. Zbl1200.11054MR2661240
  6. B. Adamczewski et Y. Bugeaud, Nombres réels de complexité sous-linéaire : mesures d’irrationalité et de transcendance. J. reine angew. Math. À paraître. 
  7. B. Adamczewski, Y. Bugeaud, and L. Davison, Continued fractions and transcendental numbers. Ann. Inst. Fourier (Grenoble) 56 (2006), 2093–2113. Zbl1152.11034MR2290775
  8. B. Adamczewski, Y. Bugeaud et F. Luca, Sur la complexité des nombres algébriques. C. R. Acad. Sci. Paris 339 (2004), 11–14. Zbl1119.11019MR2075225
  9. P. B. Allen, On the multiplicity of linear recurrence sequences. J. Number Theory 126 (2007), 212–216. Zbl1133.11006MR2354929
  10. J.-P. Allouche, Nouveaux résultats de transcendance de réels à développements non aléatoire. Gaz. Math. 84 (2000), 19–34. MR1766087
  11. F. Amoroso and E. Viada, Small points on subvarieties of a torus. Duke Math. J. 150 (2009), 407–442. Zbl1234.11081MR2582101
  12. F. Amoroso and E. Viada, On the zeros of linear recurrence sequences. Preprint. Zbl1271.11015
  13. A. Baker, On Mahler’s classification of transcendental numbers. Acta Math. 111 (1964), 97–120. Zbl0147.03403MR157943
  14. Yu. Bilu, The many faces of the subspace theorem [after Adamczewski, Bugeaud, Corvaja, Zannier ... ]. Séminaire Bourbaki. Vol. 2006/2007. Astérisque No. 317 (2008), Exp. No. 967, vii, 1–38. Zbl1220.11091MR2487729
  15. E. Bombieri and W. Gubler, Heights in Diophantine geometry. New Mathematical Monographs, vol. 4, Cambridge University Press, 2006. Zbl1115.11034MR2216774
  16. Y. Bugeaud, Approximation by algebraic numbers. Cambridge Tracts in Mathematics 160, Cambridge, 2004. Zbl1055.11002MR2136100
  17. Y. Bugeaud, Extensions of the Cugiani-Mahler Theorem. Ann. Scuola Normale Superiore di Pisa 6 (2007), 477–498. Zbl1139.11032MR2370270
  18. Y. Bugeaud, An explicit lower bound for the block complexity of an algebraic number. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19 (2008), 229–235. Zbl1268.11099MR2439519
  19. Y. Bugeaud, On the approximation to algebraic numbers by algebraic numbers. Glas. Mat. 44 (2009), 323–331. Zbl1194.11076MR2587305
  20. Y. Bugeaud, P. Corvaja, and U. Zannier, An upper bound for the G.C.D. of a n - 1 and b n - 1 . Math. Z. 243 (2003), 79–84. Zbl1021.11001MR1953049
  21. Y. Bugeaud and J.-H. Evertse, On two notions of complexity of algebraic numbers. Acta Arith. 133 (2008), 221–250. Zbl1236.11062MR2434602
  22. Y. Bugeaud and J.-H. Evertse, Approximation of complex algebraic numbers by algebraic numbers of bounded degree. Ann. Scuola Normale Superiore di Pisa 8 (2009), 333–368. Zbl1176.11031MR2548250
  23. Y. Bugeaud and F. Luca, A quantitative lower bound for the greatest prime factor of ( a b + 1 ) ( b c + 1 ) ( c a + 1 ) . Acta Arith. 114 (2004), 275–294. Zbl1122.11060MR2071083
  24. P. Bundschuh und A. Pethő, Zur Transzendenz gewisser Reihen. Monatsh. Math. 104 (1987), 199–223. Zbl0601.10025MR918473
  25. P. Corvaja and U. Zannier, Diophantine equations with power sums and universal Hilbert sets. Indag. Math. (N.S.) 9 (1998), 317–332. Zbl0923.11103MR1692189
  26. P. Corvaja and U. Zannier, Some new applications of the subspace theorem. Compositio Math. 131 (2002), 319–340. Zbl1010.11038MR1905026
  27. P. Corvaja and U. Zannier, On the greatest prime factor of ( a b + 1 ) ( a c + 1 ) . Proc. Amer. Math. Soc. 131 (2003), 1705–1709. Zbl1077.11052MR1955256
  28. M. Cugiani, Sull’approssimazione di numeri algebrici mediante razionali. Collectanea Mathematica, Pubblicazioni dell’Istituto di matematica dell’Università di Milano 169, Ed. C. Tanburini, Milano, pagg. 5 (1958). 
  29. M. Cugiani, Sulla approssimabilità dei numeri algebrici mediante numeri razionali. Ann. Mat. Pura Appl. 48 (1959), 135–145. Zbl0093.05402MR112880
  30. M. Cugiani, Sull’approssimabilità di un numero algebrico mediante numeri algebrici di un corpo assegnato. Boll. Un. Mat. Ital. 14 (1959), 151–162. Zbl0086.26402MR117220
  31. H. Davenport and K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 160–167. Zbl0066.29302MR77577
  32. E. Dubois et G. Rhin, Approximations rationnelles simultanées de nombres algébriques réels et de nombres algébriques p -adiques. In: Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, 1974), pp. 211–227. Astérisque, Nos. 24–25, Soc. Math. France, Paris, 1975. Zbl0305.10031MR374042
  33. J.-H. Evertse, On sums of S -units and linear recurrences. Compositio Math. 53 (1984), 225–244. Zbl0547.10008MR766298
  34. J.-H. Evertse, An explicit version of Faltings’ product theorem and an improvement of Roth’s lemma. Acta Arith. 73 (1995), 215–248. Zbl0857.11034MR1364461
  35. J.-H. Evertse, The number of algebraic numbers of given degree approximating a given algebraic number. In: Analytic number theory (Kyoto, 1996), 53–83, London Math. Soc. Lecture Note Ser. 247, Cambridge Univ. Press, Cambridge, 1997. Zbl0919.11048MR1694985
  36. J.-H. Evertse, On the Quantitative Subspace Theorem. Zapiski Nauchnyk Seminarov POMI 377 (2010), 217–240. Zbl1282.11085
  37. J.-H. Evertse and R. G. Ferretti, A further quantitative improvement of the Absolute Subspace Theorem. Preprint. Zbl06156615
  38. J.-H. Evertse and K. Győry, Finiteness criteria for decomposable form equations. Acta Arith. 50 (1988), 357–379. Zbl0595.10013MR961695
  39. J.-H. Evertse and K. Győry, The number of families of solutions of decomposable form equations. Acta Arith. 80 (1997), 367–394. Zbl0886.11015MR1450929
  40. J.-H. Evertse, K. Győry, C. L. Stewart, and R. Tijdeman, On S -unit equations in two unknowns. Invent. Math. 92 (1988), 461–477. Zbl0662.10012MR939471
  41. J.-H. Evertse, K. Győry, C. L. Stewart, and R. Tijdeman, S -unit equations and their applications. In: New advances in transcendence theory (Durham, 1986), 110–174, Cambridge Univ. Press, Cambridge, 1988. Zbl0658.10023MR971998
  42. J.-H. Evertse and H.P. Schlickewei, A quantitative version of the Absolute Subspace Theorem. J. reine angew. Math. 548 (2002), 21–127. Zbl1026.11060MR1915209
  43. J.-H. Evertse, H.P. Schlickewei, and W. M. Schmidt, Linear equations in variables which lie in a multiplicative group. Ann. of Math. 155 (2002), 807–836. Zbl1026.11038MR1923966
  44. S. Ferenczi and Ch. Mauduit, Transcendence of numbers with a low complexity expansion. J. Number Theory 67 (1997), 146–161. Zbl0895.11029MR1486494
  45. K. Győry, Some recent applications of S -unit equations. Journées Arithmétiques, 1991 (Geneva). Astérisque No. 209 (1992), 11, 17–38. Zbl0792.11005MR1211001
  46. K. Győry, On the numbers of families of solutions of systems of decomposable form equations. Publ. Math. Debrecen 42 (1993), 65–101. Zbl0792.11004MR1208854
  47. K. Győry, On the irreducibility of neighbouring polynomials. Acta Arith. 67 (1994), 283–294. Zbl0814.11050MR1292740
  48. K. Győry, A. Sárközy and C. L. Stewart, On the number of prime factors of integers of the form a b + 1 . Acta Arith. 74 (1996), 365–385. Zbl0857.11047MR1378230
  49. S. Hernández and F. Luca, On the largest prime factor of ( a b + 1 ) ( a c + 1 ) ( b c + 1 ) . Bol. Soc. Mat. Mexicana 9 (2003), 235–244. Zbl1108.11030MR2029272
  50. J. F. Koksma, Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen. Monatsh. Math. Phys. 48 (1939), 176–189. Zbl0021.20804MR845
  51. M. Laurent, Équations diophantiennes exponentielles. Invent. Math. 78 (1984), 299–327. Zbl0554.10009MR767195
  52. K. Mahler, Zur Approximation der Exponentialfunktionen und des Logarithmus. I, II. J. reine angew. Math. 166 (1932), 118–150. Zbl0003.38805
  53. K. Mahler, Lectures on Diophantine approximation, Part 1: g -adic numbers and Roth’s theorem. University of Notre Dame, Ann Arbor, 1961. Zbl0158.29903MR142509
  54. K. Mahler, Some suggestions for further research. Bull. Austral. Math. Soc. 29 (1984), 101–108. Zbl0517.10001MR732177
  55. M. Mignotte, Quelques remarques sur l’approximation rationnelle des nombres algébriques. J. reine angew. Math. 268/269 (1974), 341–347. Zbl0284.10011MR357336
  56. M. Mignotte, An application of W. Schmidt’s theorem: transcendental numbers and golden number. Fibonacci Quart. 15 (1977), 15–16. Zbl0353.10025MR429781
  57. A. J. van der Poorten and H. P. Schlickewei, The growth condition for recurrence sequences. Macquarie Univ. Math. Rep. 82–0041, North Ryde, Australia (1982). 
  58. D. Ridout, Rational approximations to algebraic numbers. Mathematika 4 (1957), 125–131. Zbl0079.27401MR93508
  59. K. F. Roth, Rational approximations to algebraic numbers. Mathematika 2 (1955), 1–20; corrigendum, 168. Zbl0064.28501MR72182
  60. H. P. Schlickewei, Die p -adische Verallgemeinerung des Satzes von Thue-Siegel-Roth-Schmidt. J. reine angew. Math. 288 (1976), 86–105. Zbl0333.10018MR422166
  61. H. P. Schlickewei, Linearformen mit algebraischen koeffizienten. Manuscripta Math. 18 (1976), 147–185. Zbl0323.10028MR401665
  62. H. P. Schlickewei, The 𝔭 -adic Thue-Siegel-Roth-Schmidt theorem. Arch. Math. (Basel) 29 (1977), 267–270. Zbl0365.10026MR491529
  63. W. M. Schmidt, Über simultane Approximation algebraischer Zahlen durch Rationale. Acta Math. 114 (1965) 159–206. Zbl0136.33802MR177948
  64. W. M. Schmidt, On simultaneous approximations of two algebraic numbers by rationals. Acta Math. 119 (1967), 27–50. Zbl0173.04801MR223309
  65. W. M. Schmidt, Simultaneous approximations to algebraic numbers by rationals. Acta Math. 125 (1970), 189–201. Zbl0205.06702MR268129
  66. W. M. Schmidt, Norm form equations. Ann. of Math. 96 (1972), 526–551. Zbl0226.10024MR314761
  67. W. M. Schmidt, Diophantine Approximation. Lecture Notes in Mathematics 785, Springer, 1980. Zbl0421.10019MR568710
  68. W. M. Schmidt, The subspace theorem in Diophantine approximation. Compositio Math. 69 (1989), 121–173. Zbl0683.10027MR984633
  69. W. M. Schmidt, The number of solutions of norm form equations. Trans. Amer. Math. Soc. 317 (1990), 197–227. Zbl0693.10014MR961596
  70. W. M. Schmidt, Diophantine approximations and Diophantine equations. Lecture Notes in Mathematics 1467, Springer, 1991. Zbl0754.11020MR1176315
  71. W. M. Schmidt, Zeros of linear recurrence sequences. Publ. Math. Debrecen 56 (2000), 609–630. Zbl0963.11007MR1766002
  72. Th. Schneider, Über die Approximation algebraischer Zahlen, J. reine angew. Math. 175 (1936), 182–192. 
  73. G. Troi and U. Zannier, Note on the density constant in the distribution of self-numbers. II. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 2 (1999), 397–399. Zbl1003.11035MR1706560
  74. U. Zannier, Some applications of diophantine approximation to diophantine equations (with special emphasis on the Schmidt subspace theorem). Forum, Udine, 2003. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.