The number of conjugacy classes of elements of the Cremona group of some given finite order

Jérémy Blanc

Bulletin de la Société Mathématique de France (2007)

  • Volume: 135, Issue: 3, page 419-434
  • ISSN: 0037-9484

Abstract

top
This note presents the study of the conjugacy classes of elements of some given finite order n in the Cremona group of the plane. In particular, it is shown that the number of conjugacy classes is infinite if n is even, n = 3 or n = 5 , and that it is equal to 3 (respectively 9 ) if n = 9 (respectively if n = 15 ) and to 1 for all remaining odd orders. Some precise representative elements of the classes are given.

How to cite

top

Blanc, Jérémy. "The number of conjugacy classes of elements of the Cremona group of some given finite order." Bulletin de la Société Mathématique de France 135.3 (2007): 419-434. <http://eudml.org/doc/272315>.

@article{Blanc2007,
abstract = {This note presents the study of the conjugacy classes of elements of some given finite order $n$ in the Cremona group of the plane. In particular, it is shown that the number of conjugacy classes is infinite if $n$ is even, $n=3$ or $n=5$, and that it is equal to $3$ (respectively $9$) if $n=9$ (respectively if $n=15$) and to $1$ for all remaining odd orders. Some precise representative elements of the classes are given.},
author = {Blanc, Jérémy},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Cremona group; birational transformations; conjugacy classes; elements of finite order},
language = {eng},
number = {3},
pages = {419-434},
publisher = {Société mathématique de France},
title = {The number of conjugacy classes of elements of the Cremona group of some given finite order},
url = {http://eudml.org/doc/272315},
volume = {135},
year = {2007},
}

TY - JOUR
AU - Blanc, Jérémy
TI - The number of conjugacy classes of elements of the Cremona group of some given finite order
JO - Bulletin de la Société Mathématique de France
PY - 2007
PB - Société mathématique de France
VL - 135
IS - 3
SP - 419
EP - 434
AB - This note presents the study of the conjugacy classes of elements of some given finite order $n$ in the Cremona group of the plane. In particular, it is shown that the number of conjugacy classes is infinite if $n$ is even, $n=3$ or $n=5$, and that it is equal to $3$ (respectively $9$) if $n=9$ (respectively if $n=15$) and to $1$ for all remaining odd orders. Some precise representative elements of the classes are given.
LA - eng
KW - Cremona group; birational transformations; conjugacy classes; elements of finite order
UR - http://eudml.org/doc/272315
ER -

References

top
  1. [1] L. Bayle & A. Beauville – « Birational involutions of 𝐏 2 », Asian J. Math. 4 (2000), p. 11–17, Kodaira’s issue. Zbl1055.14012MR1802909
  2. [2] A. Beauville & J. Blanc – « On Cremona transformations of prime order », C. R. Math. Acad. Sci. Paris339 (2004), p. 257–259. Zbl1062.14017MR2092009
  3. [3] E. Bertini – « Ricerche sulle trasformazioni univoche involutorie nel piano », Annali di Mat. 8 (1877), p. 244–286. JFM09.0578.02
  4. [4] J. Blanc – « Conjugacy classes of affine automorphisms of 𝕂 n and linear automorphisms of n in the Cremona groups », Manuscripta Math.119 (2006), p. 225–241. Zbl1093.14017MR2215969
  5. [5] —, « Finite abelian subgroup of the Cremona group of the plane », Thèse, University of Geneva, 2006, available online at http://www.unige.ch/cyberdocuments/theses2006/BlancJ/meta.html. 
  6. [6] —, « Finite abelian subgroups of the Cremona group of the plane », C. R. Math. Acad. Sci. Paris344 (2007), p. 21–26. Zbl1111.14003MR2286582
  7. [7] J. Blanc, I. Pan & T. Vust – « Sur un théorème de Castelnuovo », Bull. Braz. Math. Soc. 39 (2008). Zbl1139.14014MR2390684
  8. [8] I. Dolgachev & V. A. Iskovskikh – « Finite subgroups of the plane Cremona group », preprint arXiv:math.AG/0610595. Zbl1219.14015MR2641179
  9. [9] T. de Fernex – « On planar Cremona maps of prime order », Nagoya Math. J.174 (2004), p. 1–28. Zbl1062.14019MR2066103
  10. [10] T. de Fernex & L. Ein – « Resolution of indeterminacy of pairs », in Algebraic geometry, de Gruyter, 2002, p. 165–177. Zbl1098.14008MR1954063
  11. [11] V. A. Iskovskikh – « Factorization of birational mappings of rational surfaces from the point of view of Mori theory », Uspekhi Mat. Nauk51 (1996), p. 3–72. Zbl0914.14005MR1422227
  12. [12] S. Kantor – Theorie der endlichen Gruppen von eindeutigen Transformationen in der Ebene, Mayer & Müller, Berlin, 1895. JFM26.0770.03
  13. [13] J. Kollár – Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 32, Springer, 1996. Zbl0877.14012MR1440180
  14. [14] Y. Manin – « Rational surfaces over perfect fields, II », Math. USSR Sbornik1 (1967), p. 141–168. Zbl0182.23701
  15. [15] J-P. Serre – Corps locaux, Publications de l’Université de Nancago, vol. VIII, Hermann, 1968, Deuxième édition, Publications de l’Université de Nancago, No. VIII. Zbl0137.02601MR354618
  16. [16] A. Wiman – « Zur Theorie der endlichen Gruppen von birationalen Transformationen in der Ebene », Math. Ann. 48 (1896), p. 195–240. MR1510931JFM30.0600.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.