Hyperbolic systems on nilpotent covers
Bulletin de la Société Mathématique de France (2003)
- Volume: 131, Issue: 2, page 267-287
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topCoudene, Yves. "Hyperbolic systems on nilpotent covers." Bulletin de la Société Mathématique de France 131.2 (2003): 267-287. <http://eudml.org/doc/272328>.
@article{Coudene2003,
abstract = {We study the ergodicity of the weak and strong stable foliations of hyperbolic systems on nilpotent covers. Subshifts of finite type and geodesic flows on negatively curved manifolds are also considered.},
author = {Coudene, Yves},
journal = {Bulletin de la Société Mathématique de France},
keywords = {covering space; ergodic theory; geodesic flow; hyperbolic flow; invariant manifolds; Markov chain},
language = {eng},
number = {2},
pages = {267-287},
publisher = {Société mathématique de France},
title = {Hyperbolic systems on nilpotent covers},
url = {http://eudml.org/doc/272328},
volume = {131},
year = {2003},
}
TY - JOUR
AU - Coudene, Yves
TI - Hyperbolic systems on nilpotent covers
JO - Bulletin de la Société Mathématique de France
PY - 2003
PB - Société mathématique de France
VL - 131
IS - 2
SP - 267
EP - 287
AB - We study the ergodicity of the weak and strong stable foliations of hyperbolic systems on nilpotent covers. Subshifts of finite type and geodesic flows on negatively curved manifolds are also considered.
LA - eng
KW - covering space; ergodic theory; geodesic flow; hyperbolic flow; invariant manifolds; Markov chain
UR - http://eudml.org/doc/272328
ER -
References
top- [1] J. Aaronson, R. Solomyak & O. Sarig – « Tail-invariant measures for some suspension semiflows », to appear. Zbl1001.28009MR1897877
- [2] D. Anosov – Geodesic flows on closed riemannian manifolds with negative curvature, vol. 90, American Mathematical Society, Providence, R.I., 1967, English translation 1969. Zbl0176.19101MR224110
- [3] M. Babillot & F. Ledrappier – « Geodesic paths and horocycle flow on Abelian covers », Proceedings of the International Colloquium on Lie groups and ergodic theory (Mumbai 1996), Narosa Publishing House, New-Dehli, 1998, p. 1–32. Zbl0967.37020MR1699356
- [4] B. Bowditch – « Geometrical finiteness with variable curvature », 77 (1995), no. 1, p. 229–274. Zbl0877.57018MR1317633
- [5] R. Bowen – « Periodic orbits for hyperbolic flows », 94 (1972), p. 1–30. Zbl0254.58005MR298700
- [6] R. Bowen & B. Marcus – « Unique ergodicity for horocycle foliations », 13 (1977), p. 43–67. Zbl0346.58009MR451307
- [7] R. Bowen & D. Ruelle – « The ergodic theory of Axiom A flows », 29 (1975), p. 153–170. Zbl0311.58010MR380889
- [8] M. Brin – « Ergodicity of the geodesic flow », Notes from Mathematical Research Summer Institute, Seattle, 1999.
- [9] Y. Coudene – « Gibbs measures on negatively curved manifolds », to appear. Zbl1020.37006MR1956446
- [10] —, « Cocycles and stable foliations of axiom a flows », 21 (2001), p. 767–775. Zbl0996.37028MR1836430
- [11] F. Dal’bo – « Remarques sur le spectre des longueurs d’une surface et comptages », Bol. Soc. Brasil. Mat. (new series) 30 (1999), no. 2, p. 199–221. Zbl1058.53063MR1703039
- [12] —, « Topologie du feuilletage fortement stable », 50 (2000), no. 3, p. 981–993. Zbl0965.53054MR1779902
- [13] F. Dal’bo & M. Peigné – « Some negatively curved manifolds with cusps, mixing and counting », 497 (1998), p. 141–169. Zbl0890.53043MR1617430
- [14] P. Eberlein – « Geodesic flows on negatively curved manifolds I », 95 (1972), p. 492–510. Zbl0217.47304MR310926
- [15] H. Furstenberg – « The unique ergodicity of the horocycle flow », Recent advances in topological dynamics, vol. 318, Springer, 1973, p. 95–115. Zbl0256.58009MR393339
- [16] U. Hamenstädt – « Ergodic properties of gibbs measures on nilpotent covers », to appear. Zbl1014.37020MR1926280
- [17] G. Hedlund – « Fuchsian groups and transitive horocycles », 2 (1936), p. 530–542. Zbl0015.10201MR1545946JFM62.0392.03
- [18] —, « Fuchsian groups and mixtures », 40 (1939), p. 370–383. Zbl0020.40302MR1503464JFM65.0793.01
- [19] E. Hopf – « Fuchsian groups and ergodic theory », 39 (1936), p. 299–314. Zbl0014.08303MR1501848JFM62.0995.01
- [20] V. Kaimanovich – « Ergodic properties of the horocycle flow and classification of Fuchsian groups », J. Dynam. Control Sys. 6 (2000), no. 1, p. 21–56. Zbl0988.37038MR1738739
- [21] V. Kaimanovich & K. Schmidt – « Ergodicity of cocycles 1: general theory », to appear.
- [22] A. Livsic – « Cohomology of dynamical systems », 6 (1972), p. 1278–1301. Zbl0273.58013MR334287
- [23] M. Pollicott – « covers of horosphere foliations », Discrete Cont. Dynam. Sys. 6 (2000), no. 1, p. 147–154. Zbl1009.37022MR1739598
- [24] D. Ruelle – Thermodynamical formalism, Encyclopedia of Mathematics and its applications, vol. 5, Addison-Wesley Publishing Compagny, Reading MA, 1978. Zbl0401.28016MR511655
- [25] M. Shub – Global stability of dynamical systems; with the collaboration of A.Fathi, R.Langevin, Springer Verlag, New York, etc., 1987, Transl. from French by J.Christy. Zbl0606.58003MR869255
- [26] S. Smale – « Differentiable dynamical systems », 73 (1967), p. 747–817. Zbl0202.55202MR228014
- [27] R. Solomyak – « A short proof of ergodicity of Babillot-Ledrappier measures », 129 (2001), no. 12, p. 3589–3591. Zbl0978.37014MR1860491
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.