Hyperbolic systems on nilpotent covers

Yves Coudene

Bulletin de la Société Mathématique de France (2003)

  • Volume: 131, Issue: 2, page 267-287
  • ISSN: 0037-9484

Abstract

top
We study the ergodicity of the weak and strong stable foliations of hyperbolic systems on nilpotent covers. Subshifts of finite type and geodesic flows on negatively curved manifolds are also considered.

How to cite

top

Coudene, Yves. "Hyperbolic systems on nilpotent covers." Bulletin de la Société Mathématique de France 131.2 (2003): 267-287. <http://eudml.org/doc/272328>.

@article{Coudene2003,
abstract = {We study the ergodicity of the weak and strong stable foliations of hyperbolic systems on nilpotent covers. Subshifts of finite type and geodesic flows on negatively curved manifolds are also considered.},
author = {Coudene, Yves},
journal = {Bulletin de la Société Mathématique de France},
keywords = {covering space; ergodic theory; geodesic flow; hyperbolic flow; invariant manifolds; Markov chain},
language = {eng},
number = {2},
pages = {267-287},
publisher = {Société mathématique de France},
title = {Hyperbolic systems on nilpotent covers},
url = {http://eudml.org/doc/272328},
volume = {131},
year = {2003},
}

TY - JOUR
AU - Coudene, Yves
TI - Hyperbolic systems on nilpotent covers
JO - Bulletin de la Société Mathématique de France
PY - 2003
PB - Société mathématique de France
VL - 131
IS - 2
SP - 267
EP - 287
AB - We study the ergodicity of the weak and strong stable foliations of hyperbolic systems on nilpotent covers. Subshifts of finite type and geodesic flows on negatively curved manifolds are also considered.
LA - eng
KW - covering space; ergodic theory; geodesic flow; hyperbolic flow; invariant manifolds; Markov chain
UR - http://eudml.org/doc/272328
ER -

References

top
  1. [1] J. Aaronson, R. Solomyak & O. Sarig – « Tail-invariant measures for some suspension semiflows », to appear. Zbl1001.28009MR1897877
  2. [2] D. Anosov – Geodesic flows on closed riemannian manifolds with negative curvature, vol. 90, American Mathematical Society, Providence, R.I., 1967, English translation 1969. Zbl0176.19101MR224110
  3. [3] M. Babillot & F. Ledrappier – « Geodesic paths and horocycle flow on Abelian covers », Proceedings of the International Colloquium on Lie groups and ergodic theory (Mumbai 1996), Narosa Publishing House, New-Dehli, 1998, p. 1–32. Zbl0967.37020MR1699356
  4. [4] B. Bowditch – « Geometrical finiteness with variable curvature », 77 (1995), no. 1, p. 229–274. Zbl0877.57018MR1317633
  5. [5] R. Bowen – « Periodic orbits for hyperbolic flows », 94 (1972), p. 1–30. Zbl0254.58005MR298700
  6. [6] R. Bowen & B. Marcus – « Unique ergodicity for horocycle foliations », 13 (1977), p. 43–67. Zbl0346.58009MR451307
  7. [7] R. Bowen & D. Ruelle – « The ergodic theory of Axiom A flows », 29 (1975), p. 153–170. Zbl0311.58010MR380889
  8. [8] M. Brin – « Ergodicity of the geodesic flow », Notes from Mathematical Research Summer Institute, Seattle, 1999. 
  9. [9] Y. Coudene – « Gibbs measures on negatively curved manifolds », to appear. Zbl1020.37006MR1956446
  10. [10] —, « Cocycles and stable foliations of axiom a flows », 21 (2001), p. 767–775. Zbl0996.37028MR1836430
  11. [11] F. Dal’bo – « Remarques sur le spectre des longueurs d’une surface et comptages », Bol. Soc. Brasil. Mat. (new series) 30 (1999), no. 2, p. 199–221. Zbl1058.53063MR1703039
  12. [12] —, « Topologie du feuilletage fortement stable », 50 (2000), no. 3, p. 981–993. Zbl0965.53054MR1779902
  13. [13] F. Dal’bo & M. Peigné – « Some negatively curved manifolds with cusps, mixing and counting », 497 (1998), p. 141–169. Zbl0890.53043MR1617430
  14. [14] P. Eberlein – « Geodesic flows on negatively curved manifolds I », 95 (1972), p. 492–510. Zbl0217.47304MR310926
  15. [15] H. Furstenberg – « The unique ergodicity of the horocycle flow », Recent advances in topological dynamics, vol. 318, Springer, 1973, p. 95–115. Zbl0256.58009MR393339
  16. [16] U. Hamenstädt – « Ergodic properties of gibbs measures on nilpotent covers », to appear. Zbl1014.37020MR1926280
  17. [17] G. Hedlund – « Fuchsian groups and transitive horocycles », 2 (1936), p. 530–542. Zbl0015.10201MR1545946JFM62.0392.03
  18. [18] —, « Fuchsian groups and mixtures », 40 (1939), p. 370–383. Zbl0020.40302MR1503464JFM65.0793.01
  19. [19] E. Hopf – « Fuchsian groups and ergodic theory », 39 (1936), p. 299–314. Zbl0014.08303MR1501848JFM62.0995.01
  20. [20] V. Kaimanovich – « Ergodic properties of the horocycle flow and classification of Fuchsian groups », J. Dynam. Control Sys. 6 (2000), no. 1, p. 21–56. Zbl0988.37038MR1738739
  21. [21] V. Kaimanovich & K. Schmidt – « Ergodicity of cocycles 1: general theory », to appear. 
  22. [22] A. Livsic – « Cohomology of dynamical systems », 6 (1972), p. 1278–1301. Zbl0273.58013MR334287
  23. [23] M. Pollicott – « d covers of horosphere foliations », Discrete Cont. Dynam. Sys. 6 (2000), no. 1, p. 147–154. Zbl1009.37022MR1739598
  24. [24] D. Ruelle – Thermodynamical formalism, Encyclopedia of Mathematics and its applications, vol. 5, Addison-Wesley Publishing Compagny, Reading MA, 1978. Zbl0401.28016MR511655
  25. [25] M. Shub – Global stability of dynamical systems; with the collaboration of A.Fathi, R.Langevin, Springer Verlag, New York, etc., 1987, Transl. from French by J.Christy. Zbl0606.58003MR869255
  26. [26] S. Smale – « Differentiable dynamical systems », 73 (1967), p. 747–817. Zbl0202.55202MR228014
  27. [27] R. Solomyak – « A short proof of ergodicity of Babillot-Ledrappier measures », 129 (2001), no. 12, p. 3589–3591. Zbl0978.37014MR1860491

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.