Global existence of solutions to Schrödinger equations on compact riemannian manifolds below
Bulletin de la Société Mathématique de France (2010)
- Volume: 138, Issue: 4, page 583-613
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topZhong, Sijia. "Global existence of solutions to Schrödinger equations on compact riemannian manifolds below $H^1$." Bulletin de la Société Mathématique de France 138.4 (2010): 583-613. <http://eudml.org/doc/272385>.
@article{Zhong2010,
abstract = {In this paper, we will study global well-posedness for the cubic defocusing nonlinear Schrödinger equations on the compact Riemannian manifold without boundary, below the energy space, i.e. $s<1$, under some bilinear Strichartz assumption. We will find some $\tilde\{s\}<1$, such that the solution is global for $s>\tilde\{s\}$.},
author = {Zhong, Sijia},
journal = {Bulletin de la Société Mathématique de France},
keywords = {schrödinger equation; compact riemannian manifold; global; I-method},
language = {eng},
number = {4},
pages = {583-613},
publisher = {Société mathématique de France},
title = {Global existence of solutions to Schrödinger equations on compact riemannian manifolds below $H^1$},
url = {http://eudml.org/doc/272385},
volume = {138},
year = {2010},
}
TY - JOUR
AU - Zhong, Sijia
TI - Global existence of solutions to Schrödinger equations on compact riemannian manifolds below $H^1$
JO - Bulletin de la Société Mathématique de France
PY - 2010
PB - Société mathématique de France
VL - 138
IS - 4
SP - 583
EP - 613
AB - In this paper, we will study global well-posedness for the cubic defocusing nonlinear Schrödinger equations on the compact Riemannian manifold without boundary, below the energy space, i.e. $s<1$, under some bilinear Strichartz assumption. We will find some $\tilde{s}<1$, such that the solution is global for $s>\tilde{s}$.
LA - eng
KW - schrödinger equation; compact riemannian manifold; global; I-method
UR - http://eudml.org/doc/272385
ER -
References
top- [1] T. Akahori – « Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds », Commun. Pure Appl. Anal.9 (2010), p. 261–280. Zbl1187.35230MR2600435
- [2] R. Anton – « Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains », Bull. Soc. Math. France136 (2008), p. 27–65. Zbl1157.35100MR2415335
- [3] M. D. Blair, H. F. Smith & C. D. Sogge – « On Strichartz estimates for Schrödinger operators in compact manifolds with boundary », Proc. Amer. Math. Soc.136 (2008), p. 247–256. Zbl1169.35012MR2350410
- [4] J. Bourgain – « Exponential sums and nonlinear Schrödinger equations », Geom. Funct. Anal.3 (1993), p. 157–178. Zbl0787.35096MR1209300
- [5] —, « Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation », Geom. Funct. Anal.3 (1993), p. 209–262. Zbl0787.35097MR1215780
- [6] —, « Refinements of Strichartz’ inequality and applications to D-NLS with critical nonlinearity », Int. Math. Res. Not.1998 (1998), p. 253–283. Zbl0917.35126MR1616917
- [7] —, « A remark on normal forms and the “-method” for periodic NLS », J. Anal. Math.94 (2004), p. 125–157. Zbl1084.35085MR2124457
- [8] —, « On Strichartz’s inequalities and the nonlinear Schrödinger equation on irrational tori », in Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., vol. 163, Princeton Univ. Press, 2007, p. 1–20. Zbl1169.35054MR2331676
- [9] N. Burq, P. Gérard & N. Tzvetkov – « Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds », Amer. J. Math.126 (2004), p. 569–605. Zbl1067.58027MR2058384
- [10] —, « Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces », Invent. Math.159 (2005), p. 187–223. Zbl1092.35099MR2142336
- [11] —, « Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations », Ann. Sci. École Norm. Sup.38 (2005), p. 255–301. Zbl1116.35109MR2144988
- [12] T. Cazenave – Semilinear Schrödinger equations, Courant Lecture Notes in Math., vol. 10, New York University Courant Institute of Mathematical Sciences, 2003. Zbl1055.35003
- [13] J. Colliander, M. G. Grillakis & N. Tzirakis – « Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation on », Int. Math. Res. Not. 2007 (2007). Zbl1142.35085
- [14] J. Colliander, M. Keel, G. Staffilani, H. Takaoka & T. Tao – « Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation », Math. Res. Lett.9 (2002), p. 659–682. Zbl1152.35491MR1906069
- [15] —, « Resonant decompositions and the -method for the cubic nonlinear Schrödinger equation on », Discrete Contin. Dyn. Syst.21 (2008), p. 665–686. Zbl1147.35095MR2399431
- [16] D. De Silva, N. Pavlović, G. Staffilani & N. Tzirakis – « Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D », Discrete Contin. Dyn. Syst.19 (2007), p. 37–65. Zbl1293.35291MR2318273
- [17] Y. F. Fang & M. G. Grillakis – « On the global existence of rough solutions of the cubic defocusing Schrödinger equation in », J. Hyperbolic Differ. Equ.4 (2007), p. 233–257. Zbl1122.35132MR2329384
- [18] J. Ginibre – « Le problème de Cauchy pour des équations aux dérivées partielles semi-linéaires périodiques en variables d’espace », Séminaire Bourbaki (1995), exposé no 796. Zbl0870.35096
- [19] R. Killip, T. Tao & M. Visan – « The cubic nonlinear Schrödinger equation in two dimensions with radial data », J. Eur. Math. Soc. (JEMS) 11 (2009), p. 1203–1258. Zbl1187.35237MR2557134
- [20] A. Martinez – An introduction to semiclassical and microlocal analysis, Universitext, Springer, 2002. Zbl0994.35003MR1872698
- [21] S. Zhong – « The growth in time of higher Sobolev norms of solutions to Schrödinger equations on compact Riemannian manifolds », J. Differential Equations245 (2008), p. 359–376. Zbl1143.58012MR2428002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.