Global existence of solutions to Schrödinger equations on compact riemannian manifolds below H 1

Sijia Zhong

Bulletin de la Société Mathématique de France (2010)

  • Volume: 138, Issue: 4, page 583-613
  • ISSN: 0037-9484

Abstract

top
In this paper, we will study global well-posedness for the cubic defocusing nonlinear Schrödinger equations on the compact Riemannian manifold without boundary, below the energy space, i.e. s < 1 , under some bilinear Strichartz assumption. We will find some s ˜ < 1 , such that the solution is global for s > s ˜ .

How to cite

top

Zhong, Sijia. "Global existence of solutions to Schrödinger equations on compact riemannian manifolds below $H^1$." Bulletin de la Société Mathématique de France 138.4 (2010): 583-613. <http://eudml.org/doc/272385>.

@article{Zhong2010,
abstract = {In this paper, we will study global well-posedness for the cubic defocusing nonlinear Schrödinger equations on the compact Riemannian manifold without boundary, below the energy space, i.e. $s&lt;1$, under some bilinear Strichartz assumption. We will find some $\tilde\{s\}&lt;1$, such that the solution is global for $s&gt;\tilde\{s\}$.},
author = {Zhong, Sijia},
journal = {Bulletin de la Société Mathématique de France},
keywords = {schrödinger equation; compact riemannian manifold; global; I-method},
language = {eng},
number = {4},
pages = {583-613},
publisher = {Société mathématique de France},
title = {Global existence of solutions to Schrödinger equations on compact riemannian manifolds below $H^1$},
url = {http://eudml.org/doc/272385},
volume = {138},
year = {2010},
}

TY - JOUR
AU - Zhong, Sijia
TI - Global existence of solutions to Schrödinger equations on compact riemannian manifolds below $H^1$
JO - Bulletin de la Société Mathématique de France
PY - 2010
PB - Société mathématique de France
VL - 138
IS - 4
SP - 583
EP - 613
AB - In this paper, we will study global well-posedness for the cubic defocusing nonlinear Schrödinger equations on the compact Riemannian manifold without boundary, below the energy space, i.e. $s&lt;1$, under some bilinear Strichartz assumption. We will find some $\tilde{s}&lt;1$, such that the solution is global for $s&gt;\tilde{s}$.
LA - eng
KW - schrödinger equation; compact riemannian manifold; global; I-method
UR - http://eudml.org/doc/272385
ER -

References

top
  1. [1] T. Akahori – « Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds », Commun. Pure Appl. Anal.9 (2010), p. 261–280. Zbl1187.35230MR2600435
  2. [2] R. Anton – « Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains », Bull. Soc. Math. France136 (2008), p. 27–65. Zbl1157.35100MR2415335
  3. [3] M. D. Blair, H. F. Smith & C. D. Sogge – « On Strichartz estimates for Schrödinger operators in compact manifolds with boundary », Proc. Amer. Math. Soc.136 (2008), p. 247–256. Zbl1169.35012MR2350410
  4. [4] J. Bourgain – « Exponential sums and nonlinear Schrödinger equations », Geom. Funct. Anal.3 (1993), p. 157–178. Zbl0787.35096MR1209300
  5. [5] —, « Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation », Geom. Funct. Anal.3 (1993), p. 209–262. Zbl0787.35097MR1215780
  6. [6] —, « Refinements of Strichartz’ inequality and applications to 2 D-NLS with critical nonlinearity », Int. Math. Res. Not.1998 (1998), p. 253–283. Zbl0917.35126MR1616917
  7. [7] —, « A remark on normal forms and the “ I -method” for periodic NLS », J. Anal. Math.94 (2004), p. 125–157. Zbl1084.35085MR2124457
  8. [8] —, « On Strichartz’s inequalities and the nonlinear Schrödinger equation on irrational tori », in Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., vol. 163, Princeton Univ. Press, 2007, p. 1–20. Zbl1169.35054MR2331676
  9. [9] N. Burq, P. Gérard & N. Tzvetkov – « Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds », Amer. J. Math.126 (2004), p. 569–605. Zbl1067.58027MR2058384
  10. [10] —, « Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces », Invent. Math.159 (2005), p. 187–223. Zbl1092.35099MR2142336
  11. [11] —, « Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations », Ann. Sci. École Norm. Sup.38 (2005), p. 255–301. Zbl1116.35109MR2144988
  12. [12] T. Cazenave – Semilinear Schrödinger equations, Courant Lecture Notes in Math., vol. 10, New York University Courant Institute of Mathematical Sciences, 2003. Zbl1055.35003
  13. [13] J. Colliander, M. G. Grillakis & N. Tzirakis – « Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation on 2 », Int. Math. Res. Not. 2007 (2007). Zbl1142.35085
  14. [14] J. Colliander, M. Keel, G. Staffilani, H. Takaoka & T. Tao – « Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation », Math. Res. Lett.9 (2002), p. 659–682. Zbl1152.35491MR1906069
  15. [15] —, « Resonant decompositions and the I -method for the cubic nonlinear Schrödinger equation on 2 », Discrete Contin. Dyn. Syst.21 (2008), p. 665–686. Zbl1147.35095MR2399431
  16. [16] D. De Silva, N. Pavlović, G. Staffilani & N. Tzirakis – « Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D », Discrete Contin. Dyn. Syst.19 (2007), p. 37–65. Zbl1293.35291MR2318273
  17. [17] Y. F. Fang & M. G. Grillakis – « On the global existence of rough solutions of the cubic defocusing Schrödinger equation in 𝐑 2 + 1 », J. Hyperbolic Differ. Equ.4 (2007), p. 233–257. Zbl1122.35132MR2329384
  18. [18] J. Ginibre – « Le problème de Cauchy pour des équations aux dérivées partielles semi-linéaires périodiques en variables d’espace », Séminaire Bourbaki (1995), exposé no 796. Zbl0870.35096
  19. [19] R. Killip, T. Tao & M. Visan – « The cubic nonlinear Schrödinger equation in two dimensions with radial data », J. Eur. Math. Soc. (JEMS) 11 (2009), p. 1203–1258. Zbl1187.35237MR2557134
  20. [20] A. Martinez – An introduction to semiclassical and microlocal analysis, Universitext, Springer, 2002. Zbl0994.35003MR1872698
  21. [21] S. Zhong – « The growth in time of higher Sobolev norms of solutions to Schrödinger equations on compact Riemannian manifolds », J. Differential Equations245 (2008), p. 359–376. Zbl1143.58012MR2428002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.