Radiation fields

Piotr T. Chruściel; Olivier Lengard

Bulletin de la Société Mathématique de France (2005)

  • Volume: 133, Issue: 1, page 1-72
  • ISSN: 0037-9484

Abstract

top
We study the “hyperboloidal Cauchy problem” for linear and semi-linear wave equations on Minkowski space-time, with initial data in weighted Sobolev spaces allowing singular behavior at the boundary, or with polyhomogeneous initial data. Specifically, we consider nonlinear symmetric hyperbolic systems of a form which includes scalar fields with a λ φ p nonlinearity, as well as wave maps, with initial data given on a hyperboloid; several of the results proved apply to general space-times admitting conformal completions at null infinity, as well to a large class of equations with a similar non-linearity structure. We prove existence of solutions with controlled asymptotic behavior, and asymptotic expansions for solutions when the initial data have such expansions. In particular we prove that polyhomogeneous initial data (satisfying compatibility conditions) lead to solutions which are polyhomogeneous at the conformal boundary + of the Minkowski space-time.

How to cite

top

Chruściel, Piotr T., and Lengard, Olivier. "Radiation fields." Bulletin de la Société Mathématique de France 133.1 (2005): 1-72. <http://eudml.org/doc/272421>.

@article{Chruściel2005,
abstract = {We study the “hyperboloidal Cauchy problem” for linear and semi-linear wave equations on Minkowski space-time, with initial data in weighted Sobolev spaces allowing singular behavior at the boundary, or with polyhomogeneous initial data. Specifically, we consider nonlinear symmetric hyperbolic systems of a form which includes scalar fields with a $\lambda \phi ^p$ nonlinearity, as well as wave maps, with initial data given on a hyperboloid; several of the results proved apply to general space-times admitting conformal completions at null infinity, as well to a large class of equations with a similar non-linearity structure. We prove existence of solutions with controlled asymptotic behavior, and asymptotic expansions for solutions when the initial data have such expansions. In particular we prove that polyhomogeneous initial data (satisfying compatibility conditions) lead to solutions which are polyhomogeneous at the conformal boundary $\mathcal \{I\}^+$ of the Minkowski space-time.},
author = {Chruściel, Piotr T., Lengard, Olivier},
journal = {Bulletin de la Société Mathématique de France},
keywords = {wave equations; asymptotic behavior; conformal infinity; polyhomogeneous expansions; singularity propagation; symmetric hyperbolic systems},
language = {eng},
number = {1},
pages = {1-72},
publisher = {Société mathématique de France},
title = {Radiation fields},
url = {http://eudml.org/doc/272421},
volume = {133},
year = {2005},
}

TY - JOUR
AU - Chruściel, Piotr T.
AU - Lengard, Olivier
TI - Radiation fields
JO - Bulletin de la Société Mathématique de France
PY - 2005
PB - Société mathématique de France
VL - 133
IS - 1
SP - 1
EP - 72
AB - We study the “hyperboloidal Cauchy problem” for linear and semi-linear wave equations on Minkowski space-time, with initial data in weighted Sobolev spaces allowing singular behavior at the boundary, or with polyhomogeneous initial data. Specifically, we consider nonlinear symmetric hyperbolic systems of a form which includes scalar fields with a $\lambda \phi ^p$ nonlinearity, as well as wave maps, with initial data given on a hyperboloid; several of the results proved apply to general space-times admitting conformal completions at null infinity, as well to a large class of equations with a similar non-linearity structure. We prove existence of solutions with controlled asymptotic behavior, and asymptotic expansions for solutions when the initial data have such expansions. In particular we prove that polyhomogeneous initial data (satisfying compatibility conditions) lead to solutions which are polyhomogeneous at the conformal boundary $\mathcal {I}^+$ of the Minkowski space-time.
LA - eng
KW - wave equations; asymptotic behavior; conformal infinity; polyhomogeneous expansions; singularity propagation; symmetric hyperbolic systems
UR - http://eudml.org/doc/272421
ER -

References

top
  1. [1] L. Andersson & P. Chruściel – « On “hyperboloidal” Cauchy data for vacuum Einstein equations and obstructions to smoothness of null infinity », Phys. Rev. Lett.70 (1993), p. 2829–2832. Zbl1051.83507MR1215407
  2. [2] L. Andersson & P. Chruściel – « On “hyperboloidal" Cauchy data for vacuum Einstein equations and obstructions to smoothness of Scri », Commun. Math. Phys.161 (1994), p. 533–568. Zbl0793.53084MR1269390
  3. [3] —, « On asymptotic behavior of solutions of the constraint equations in general relativity with “hyperboloidal boundary conditions” », Dissert. Math.355 (1996), p. 1–100. Zbl0873.35101MR1405962
  4. [4] L. Andersson, P. Chruściel & H. Friedrich – « On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einsteins field equations », Commun. Math. Phys.149 (1992), p. 587–612. Zbl0764.53027MR1186044
  5. [5] B. Berger, P. Chruściel & V. Moncrief – « On asymptotically flat space-times with G 2 invariant Cauchy surfaces », Annals of Phys.237 (1995), p. 322–354. Zbl0967.83507MR1314228
  6. [6] H. Bondi, M. van der Burg & A. Metzner – « Gravitational waves in general relativity VII: Waves from axi-symmetric isolated systems », Proc. Roy. Soc. London A269 (1962), p. 21–52. Zbl0106.41903MR147276
  7. [7] J.-M. Bony – « Interaction des singularités pour les équations aux dérivées partielles non linéaires », Goulaouic-Meyer-Schwartz Seminar, 1981/1982, École Polytechnique, Palaiseau, 1982, Exposé II, 12. Zbl0498.35017MR671600
  8. [8] Y. Choquet-Bruhat – « Global existence theorems by the conformal method », Recent developments in hyperbolic equations (Pisa, 1987), Longman Sci. Tech., Harlow, 1988, p. 16–37. Zbl0734.35142MR984357
  9. [9] —, « Global solutions of Yang-Mills equations on anti-de Sitter spacetime », Classical Quantum Gravity6 (1989), p. 1781–1789. Zbl0698.53040MR1028380
  10. [10] —, « Global existence of wave maps », Proceedings of the IX International Conference on Waves and Stability in Continuous Media (Bari, 1997), vol. 57, Rend. Circ. Mat. Palermo (2) Suppl., 1998, p. 143–152. Zbl0933.58028MR1708504
  11. [11] Y. Choquet-Bruhat & C. H. Gu – « Existence globale d’applications harmoniques sur l’espace-temps de Minkowski M 3 », 308 (1989), p. 167–170. Zbl0661.53043MR984915
  12. [12] Y. Choquet-Bruhat & N. Noutchegueme – « Solutions globales du système de Yang-Mills-Vlasov (masse nulle) », 311 (1990), p. 785–788. Zbl0715.53046MR1082633
  13. [13] D. Christodoulou – « Global solutions of nonlinear hyperbolic equations for small initial data », 39 (1986), p. 267–282. Zbl0612.35090MR820070
  14. [14] D. Christodoulou & A. S. Tahvildar-Zadeh – « On the asymptotic behavior of spherically symmetric wave maps », 71 (1993), p. 31–69. Zbl0791.58105MR1230285
  15. [15] —, « On the regularity of spherically symmetric wave maps », 46 (1993), p. 1041–1091. Zbl0744.58071MR1223662
  16. [16] P. Chruściel & O. Lengard – « Polyhomogeneous solutions of wave equations in the radiation regime », Journées équations aux dérivées partielles, Nantes, 5–9 June 2000 (X. Saint Raymond, N. Depauw & D. Robert, éds.), http://www.math.sciences.univ-nantes.fr/edpa/2000, p. II.1–III.17. Zbl1008.83007MR1775679
  17. [17] P. Chruściel, M. MacCallum & D. Singleton – « Gravitational waves in general relativity. XIV: Bondi expansions and the “polyhomogeneity” of Scri », Phil. Trans. Roy. Soc. London A350 (1995), p. 113–141. Zbl0829.53065MR1325206
  18. [18] J. Corvino – « Scalar curvature deformation and a gluing construction for the Einstein constraint equations », 214 (2000), p. 137–189. Zbl1031.53064MR1794269
  19. [19] J. Corvino & R. Schoen – « Vacuum spacetimes which are identically Schwarzschild near spatial infinity », talk given at the Santa Barbara Conference on Strong Gravitational Fields, June 22–26 (1999), http://doug-pc.itp.ucsb.edu/online/gravity_c99/schoen. 
  20. [20] H. Friedrich – « Cauchy problem for the conformal vacuum field equations in general relativity », 91 (1983), p. 445–472. Zbl0555.35116MR727195
  21. [21] —, « Existence and structure of past asymptotically simple solutions of Einstein’s field equations with positive cosmological constant », J. Geom. Phys.3 (1986), p. 101–117. Zbl0592.53061MR855572
  22. [22] —, « On the existence of n -geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure », 107 (1986), p. 587–609. Zbl0659.53056MR868737
  23. [23] —, « On the global existence and the asymptotic behavior of solutions to the Einstein-Maxwell-Yang-Mills equations », J. Diff. Geom.34 (1991), p. 275–345. Zbl0737.53070MR1131434
  24. [24] —, « Einstein equations and conformal structure: Existence of anti-de-Sitter-type space-times », J. Geom. and Phys.17 (1995), p. 125–184. Zbl0840.53055MR1356135
  25. [25] —, « Einstein’s equation and geometric asymptotics », Gravitation and Relativity: At the turn of the Millennium (N. Dahdich & J. Narlikar, éds.), IUCAA, Pune, 1998, Proceedings of GR15, p. 153–176. 
  26. [26] H. Friedrich & B. Schmidt – « Conformal geodesics in general relativity », Proc. Roy. Soc. London Ser. A414 (1987), p. 171–195. Zbl0629.53063MR919722
  27. [27] L. Hörmander – « The boundary problems of physical geodesy », Arch. Rat. Mech. Analysis62 (1976), p. 1–52. Zbl0331.35020
  28. [28] M. Joshi – « A commutator proof of the propagation of polyhomogeneity for semi-linear equations », Commun. Partial Diff. Eq.22 (1997), p. 435–463. Zbl0876.35139MR1443045
  29. [29] J. Kroon – « Polyhomogeneity and zero-rest-mass fields with applications to Newman-Penrose constants », Class. Quantum Grav. 17 (2000), no. 3, p. 605–621. Zbl0947.83026MR1745032
  30. [30] O. Lengard – « Solutions of wave equations in the radiation regime », Thèse, Université de Tours, 2001. 
  31. [31] R. Melrose & N. Ritter – « Interaction of nonlinear progressing waves for semilinear wave equations », 121 (1985), p. 187–213. Zbl0575.35063MR782559
  32. [32] R. Newman – « The global structure of simple space-times », 123 (1989), p. 17–52. Zbl0683.53056MR1002031
  33. [33] R. Penrose – « Zero rest-mass fields including gravitation », Proc. Roy. Soc. London A284 (1965), p. 159–203. Zbl0129.41202MR175590
  34. [34] R. Sachs – « Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time », Proc. Roy. Soc. London A270 (1962), p. 103–126. Zbl0101.43605MR149908
  35. [35] M. Taylor – Partial differential equations, Springer, New York, Berlin, Heidelberg, 1996. Zbl0869.35003MR1395147
  36. [36] A. Trautman – « King’s College Lecture Notes on General Relativity », mimeographed notes; reprinted in Gen. Rel. Grav. 34 (2002), p.721–762, May-June 1958. Zbl1004.83001
  37. [37] —, « Radiation and boundary conditions in the theory of gravitation », Bull. Acad. Pol. Sci., Série sci. math., astr. et phys. VI (1958), p. 407–412. Zbl0082.41201MR97266
  38. [38] R. Wald – General relativity, University of Chicago Press, Chicago, 1984. Zbl0549.53001MR757180

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.