# Existence of graphs with sub exponential transitions probability decay and applications

Bulletin de la Société Mathématique de France (2010)

- Volume: 138, Issue: 4, page 491-542
- ISSN: 0037-9484

## Access Full Article

top## Abstract

top## How to cite

topRau, Clément. "Existence of graphs with sub exponential transitions probability decay and applications." Bulletin de la Société Mathématique de France 138.4 (2010): 491-542. <http://eudml.org/doc/272448>.

@article{Rau2010,

abstract = {In this paper, we recall the existence of graphs with bounded valency such that the simple random walk has a return probability at time $n$ at the origin of order $\exp (-n^\{\alpha \}),$ for fixed $\alpha \in [0,1[$ and with Følner function $\exp (n^\{ \frac\{2\alpha \}\{1-\alpha \}\})$. This result was proved by Erschler (see [4], [3]); we give a more detailed proof of this construction in the appendix. In the second part, we give an application of the existence of such graphs. We obtain bounds of the correct order for some functional of the local time of a simple random walk on an infinite cluster on the percolation model.},

author = {Rau, Clément},

journal = {Bulletin de la Société Mathématique de France},

keywords = {random walk; local time; percolation cluster; isoperimetric inequality; wreath product; generalized wreath product},

language = {eng},

number = {4},

pages = {491-542},

publisher = {Société mathématique de France},

title = {Existence of graphs with sub exponential transitions probability decay and applications},

url = {http://eudml.org/doc/272448},

volume = {138},

year = {2010},

}

TY - JOUR

AU - Rau, Clément

TI - Existence of graphs with sub exponential transitions probability decay and applications

JO - Bulletin de la Société Mathématique de France

PY - 2010

PB - Société mathématique de France

VL - 138

IS - 4

SP - 491

EP - 542

AB - In this paper, we recall the existence of graphs with bounded valency such that the simple random walk has a return probability at time $n$ at the origin of order $\exp (-n^{\alpha }),$ for fixed $\alpha \in [0,1[$ and with Følner function $\exp (n^{ \frac{2\alpha }{1-\alpha }})$. This result was proved by Erschler (see [4], [3]); we give a more detailed proof of this construction in the appendix. In the second part, we give an application of the existence of such graphs. We obtain bounds of the correct order for some functional of the local time of a simple random walk on an infinite cluster on the percolation model.

LA - eng

KW - random walk; local time; percolation cluster; isoperimetric inequality; wreath product; generalized wreath product

UR - http://eudml.org/doc/272448

ER -

## References

top- [1] T. Coulhon – « Ultracontractivity and Nash type inequalities », J. Funct. Anal.141 (1996), p. 510–539. Zbl0887.58009MR1418518
- [2] A. Erschler – « On isoperimetric profiles of finitely generated groups », Geom. Dedicata100 (2003), p. 157–171. Zbl1049.20024MR2011120
- [3] —, « Generalized wreath products », Int. Math. Res. Not. (2006), p. 14. Zbl1118.05042MR2276348
- [4] —, « Isoperimetry for wreath products of Markov chains and multiplicity of selfintersections of random walks », Probab. Theory Related Fields136 (2006), p. 560–586. Zbl1105.60009MR2257136
- [5] M. Gromov – « Entropy and isoperimetry for linear and non-linear group actions », preprint http://www.ihes.fr/~gromov/topics/grig-final-june11-08.pdf. Zbl1280.20043MR2442946
- [6] P. Mathieu & E. Remy – « Isoperimetry and heat kernel decay on percolation clusters », Ann. Probab.32 (2004), p. 100–128. Zbl1078.60085MR2040777
- [7] C. Rau – « Marches aléatoires sur un amas infini de percolation », Thèse, Université de Provence - Aix-Marseille I, 2006.
- [8] —, « Sur le nombre de points visités par une marche aléatoire sur un amas infini de percolation », Bull. Soc. Math. France135 (2007), p. 135–169. Zbl1156.60074MR2430203
- [9] L. Saloff-Coste & C. Pittet – « A survey on the relationships between volume growth, isoperimetry, and the behaviour of simple random walks on Caley graphs, with example », preprint, 2001.
- [10] W. Woess – Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, vol. 138, Cambridge University Press, 2000. Zbl0951.60002MR1743100

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.