Compatibility of the theta correspondence with the Whittaker functors

Vincent Lafforgue; Sergey Lysenko

Bulletin de la Société Mathématique de France (2011)

  • Volume: 139, Issue: 1, page 75-88
  • ISSN: 0037-9484

Abstract

top
We prove that the global geometric theta-lifting functor for the dual pair ( H , G ) is compatible with the Whittaker functors, where ( H , G ) is one of the pairs ( S 𝕆 2 n , 𝕊 p 2 n ) , ( 𝕊 p 2 n , S 𝕆 2 n + 2 ) or ( 𝔾 L n , 𝔾 L n + 1 ) . That is, the composition of the theta-lifting functor from H to G with the Whittaker functor for G is isomorphic to the Whittaker functor for H .

How to cite

top

Lafforgue, Vincent, and Lysenko, Sergey. "Compatibility of the theta correspondence with the Whittaker functors." Bulletin de la Société Mathématique de France 139.1 (2011): 75-88. <http://eudml.org/doc/272450>.

@article{Lafforgue2011,
abstract = {We prove that the global geometric theta-lifting functor for the dual pair $(H, G)$ is compatible with the Whittaker functors, where $(H,G)$ is one of the pairs $(\{\mathrm \{S\}\mathbb \{O\}\}_\{2n\}, \{\mathbb \{S\}p\}_\{2n\})$, $(\{\mathbb \{S\}p\}_\{2n\}, \{\mathrm \{S\}\mathbb \{O\}\}_\{2n+2\})$ or $(\{\mathbb \{G\}\mathrm \{L\}\}_\{n\},\{\mathbb \{G\}\mathrm \{L\}\}_\{n+1\})$. That is, the composition of the theta-lifting functor from $H$ to $G$ with the Whittaker functor for $G$ is isomorphic to the Whittaker functor for $H$.},
author = {Lafforgue, Vincent, Lysenko, Sergey},
journal = {Bulletin de la Société Mathématique de France},
keywords = {geometric Langlands; Whittaker functor; theta-lifting},
language = {eng},
number = {1},
pages = {75-88},
publisher = {Société mathématique de France},
title = {Compatibility of the theta correspondence with the Whittaker functors},
url = {http://eudml.org/doc/272450},
volume = {139},
year = {2011},
}

TY - JOUR
AU - Lafforgue, Vincent
AU - Lysenko, Sergey
TI - Compatibility of the theta correspondence with the Whittaker functors
JO - Bulletin de la Société Mathématique de France
PY - 2011
PB - Société mathématique de France
VL - 139
IS - 1
SP - 75
EP - 88
AB - We prove that the global geometric theta-lifting functor for the dual pair $(H, G)$ is compatible with the Whittaker functors, where $(H,G)$ is one of the pairs $({\mathrm {S}\mathbb {O}}_{2n}, {\mathbb {S}p}_{2n})$, $({\mathbb {S}p}_{2n}, {\mathrm {S}\mathbb {O}}_{2n+2})$ or $({\mathbb {G}\mathrm {L}}_{n},{\mathbb {G}\mathrm {L}}_{n+1})$. That is, the composition of the theta-lifting functor from $H$ to $G$ with the Whittaker functor for $G$ is isomorphic to the Whittaker functor for $H$.
LA - eng
KW - geometric Langlands; Whittaker functor; theta-lifting
UR - http://eudml.org/doc/272450
ER -

References

top
  1. [1] E. Frenkel, D. Gaitsgory & K. Vilonen – « Whittaker patterns in the geometry of moduli spaces of bundles on curves », Ann. of Math.153 (2001), p. 699–748. Zbl1070.11050MR1836286
  2. [2] —, « On the geometric Langlands conjecture », J. Amer. Math. Soc.15 (2002), p. 367–417. Zbl1071.11039MR1887638
  3. [3] Y. Laszlo & M. Olsson – « The six operations for sheaves on Artin stacks. II. Adic coefficients », Publ. Math. Inst. Hautes Études Sci.107 (2008), p. 169–210. Zbl1191.14003MR2434693
  4. [4] S. Lysenko – « Moduli of metaplectic bundles on curves and theta-sheaves », Ann. Sci. École Norm. Sup.39 (2006), p. 415–466. Zbl1111.14029MR2265675
  5. [5] —, « Geometric Waldspurger periods », Compos. Math.144 (2008), p. 377–438. Zbl1209.14010MR2406117
  6. [6] —, « Geometric theta-lifting for the dual pair 𝕊𝕆 2 m , 𝕊𝕡 2 n », Ann. Sci. École Norm. Sup.44 (2011), p. 427–493. Zbl1229.22015MR2839456
  7. [7] —, « On automorphic sheaves on Bun G », preprint arXiv:math/0211067. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.