Compatibility of the theta correspondence with the Whittaker functors
Vincent Lafforgue; Sergey Lysenko
Bulletin de la Société Mathématique de France (2011)
- Volume: 139, Issue: 1, page 75-88
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topLafforgue, Vincent, and Lysenko, Sergey. "Compatibility of the theta correspondence with the Whittaker functors." Bulletin de la Société Mathématique de France 139.1 (2011): 75-88. <http://eudml.org/doc/272450>.
@article{Lafforgue2011,
abstract = {We prove that the global geometric theta-lifting functor for the dual pair $(H, G)$ is compatible with the Whittaker functors, where $(H,G)$ is one of the pairs $(\{\mathrm \{S\}\mathbb \{O\}\}_\{2n\}, \{\mathbb \{S\}p\}_\{2n\})$, $(\{\mathbb \{S\}p\}_\{2n\}, \{\mathrm \{S\}\mathbb \{O\}\}_\{2n+2\})$ or $(\{\mathbb \{G\}\mathrm \{L\}\}_\{n\},\{\mathbb \{G\}\mathrm \{L\}\}_\{n+1\})$. That is, the composition of the theta-lifting functor from $H$ to $G$ with the Whittaker functor for $G$ is isomorphic to the Whittaker functor for $H$.},
author = {Lafforgue, Vincent, Lysenko, Sergey},
journal = {Bulletin de la Société Mathématique de France},
keywords = {geometric Langlands; Whittaker functor; theta-lifting},
language = {eng},
number = {1},
pages = {75-88},
publisher = {Société mathématique de France},
title = {Compatibility of the theta correspondence with the Whittaker functors},
url = {http://eudml.org/doc/272450},
volume = {139},
year = {2011},
}
TY - JOUR
AU - Lafforgue, Vincent
AU - Lysenko, Sergey
TI - Compatibility of the theta correspondence with the Whittaker functors
JO - Bulletin de la Société Mathématique de France
PY - 2011
PB - Société mathématique de France
VL - 139
IS - 1
SP - 75
EP - 88
AB - We prove that the global geometric theta-lifting functor for the dual pair $(H, G)$ is compatible with the Whittaker functors, where $(H,G)$ is one of the pairs $({\mathrm {S}\mathbb {O}}_{2n}, {\mathbb {S}p}_{2n})$, $({\mathbb {S}p}_{2n}, {\mathrm {S}\mathbb {O}}_{2n+2})$ or $({\mathbb {G}\mathrm {L}}_{n},{\mathbb {G}\mathrm {L}}_{n+1})$. That is, the composition of the theta-lifting functor from $H$ to $G$ with the Whittaker functor for $G$ is isomorphic to the Whittaker functor for $H$.
LA - eng
KW - geometric Langlands; Whittaker functor; theta-lifting
UR - http://eudml.org/doc/272450
ER -
References
top- [1] E. Frenkel, D. Gaitsgory & K. Vilonen – « Whittaker patterns in the geometry of moduli spaces of bundles on curves », Ann. of Math.153 (2001), p. 699–748. Zbl1070.11050MR1836286
- [2] —, « On the geometric Langlands conjecture », J. Amer. Math. Soc.15 (2002), p. 367–417. Zbl1071.11039MR1887638
- [3] Y. Laszlo & M. Olsson – « The six operations for sheaves on Artin stacks. II. Adic coefficients », Publ. Math. Inst. Hautes Études Sci.107 (2008), p. 169–210. Zbl1191.14003MR2434693
- [4] S. Lysenko – « Moduli of metaplectic bundles on curves and theta-sheaves », Ann. Sci. École Norm. Sup.39 (2006), p. 415–466. Zbl1111.14029MR2265675
- [5] —, « Geometric Waldspurger periods », Compos. Math.144 (2008), p. 377–438. Zbl1209.14010MR2406117
- [6] —, « Geometric theta-lifting for the dual pair », Ann. Sci. École Norm. Sup.44 (2011), p. 427–493. Zbl1229.22015MR2839456
- [7] —, « On automorphic sheaves on », preprint arXiv:math/0211067.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.