Geometric theta-lifting for the dual pair
Annales scientifiques de l'École Normale Supérieure (2011)
- Volume: 44, Issue: 3, page 427-493
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topLysenko, Sergey. "Geometric theta-lifting for the dual pair $\mathbb {SO}_{2m}, \mathbb {S}\mathrm {p}_{2n}$." Annales scientifiques de l'École Normale Supérieure 44.3 (2011): 427-493. <http://eudml.org/doc/272238>.
@article{Lysenko2011,
abstract = {Let $X$ be a smooth projective curve over an algebraically closed field of characteristic $>2$. Consider the dual pair $H=\mathrm \{SO\}_\{2m\}, G=\mathrm \{Sp\}_\{2n\}$ over $X$ with $H$ split. Write $\mathrm \{Bun\}_G$ and $\mathrm \{Bun\}_H$ for the stacks of $G$-torsors and $H$-torsors on $X$. The theta-kernel $\mathrm \{Aut\}_\{G,H\}$ on $\mathrm \{Bun\}_G\times \mathrm \{Bun\}_H$ yields theta-lifting functors $F_G: \mathrm \{D\}(\mathrm \{Bun\}_H)\rightarrow \mathrm \{D\}(\mathrm \{Bun\}_G)$ and $F_H: \mathrm \{D\}(\mathrm \{Bun\}_G)\rightarrow \mathrm \{D\}(\mathrm \{Bun\}_H)$ between the corresponding derived categories. We describe the relation of these functors with Hecke operators.
In two particular cases these functors realize the geometric Langlands functoriality for the above pair (in the non ramified case). Namely, we show that for $n=m$ the functor $F_G: \mathrm \{D\}(\mathrm \{Bun\}_H)\rightarrow \mathrm \{D\}(\mathrm \{Bun\}_G)$ commutes with Hecke operators with respect to the inclusion of the Langlands dual groups $\check\{H\}\,\widetilde\{\rightarrow \}\, \mathrm \{SO\}_\{2n\}\stackrel\{\}\{\hookrightarrow \} \mathrm \{SO\}_\{2n+1\}\,\widetilde\{\rightarrow \}\,\check\{G\}$. For $m=n+1$ we show that the functor $F_H: \mathrm \{D\}(\mathrm \{Bun\}_G)\rightarrow \mathrm \{D\}(\mathrm \{Bun\}_H)$ commutes with Hecke operators with respect to the inclusion of the Langlands dual groups $\check\{G\}\,\widetilde\{\rightarrow \}\, \mathrm \{SO\}_\{2n+1\}\stackrel\{\}\{\hookrightarrow \} \mathrm \{SO\}_\{2n+2\}\,\widetilde\{\rightarrow \}\, \check\{H\}$.
In other cases the relation is more complicated and involves the $\mathrm \{SL\}_2$ of Arthur. As a step of the proof, we establish the geometric theta-lifting for the dual pair $\mathrm \{GL\}_m, \mathrm \{GL\}_n$. Our global results are derived from the corresponding local ones, which provide a geometric analog of a theorem of Rallis.},
author = {Lysenko, Sergey},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {theta-lifting; geometric Langlands; Langlands functoriality; theta-sheaf},
language = {eng},
number = {3},
pages = {427-493},
publisher = {Société mathématique de France},
title = {Geometric theta-lifting for the dual pair $\mathbb \{SO\}_\{2m\}, \mathbb \{S\}\mathrm \{p\}_\{2n\}$},
url = {http://eudml.org/doc/272238},
volume = {44},
year = {2011},
}
TY - JOUR
AU - Lysenko, Sergey
TI - Geometric theta-lifting for the dual pair $\mathbb {SO}_{2m}, \mathbb {S}\mathrm {p}_{2n}$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2011
PB - Société mathématique de France
VL - 44
IS - 3
SP - 427
EP - 493
AB - Let $X$ be a smooth projective curve over an algebraically closed field of characteristic $>2$. Consider the dual pair $H=\mathrm {SO}_{2m}, G=\mathrm {Sp}_{2n}$ over $X$ with $H$ split. Write $\mathrm {Bun}_G$ and $\mathrm {Bun}_H$ for the stacks of $G$-torsors and $H$-torsors on $X$. The theta-kernel $\mathrm {Aut}_{G,H}$ on $\mathrm {Bun}_G\times \mathrm {Bun}_H$ yields theta-lifting functors $F_G: \mathrm {D}(\mathrm {Bun}_H)\rightarrow \mathrm {D}(\mathrm {Bun}_G)$ and $F_H: \mathrm {D}(\mathrm {Bun}_G)\rightarrow \mathrm {D}(\mathrm {Bun}_H)$ between the corresponding derived categories. We describe the relation of these functors with Hecke operators.
In two particular cases these functors realize the geometric Langlands functoriality for the above pair (in the non ramified case). Namely, we show that for $n=m$ the functor $F_G: \mathrm {D}(\mathrm {Bun}_H)\rightarrow \mathrm {D}(\mathrm {Bun}_G)$ commutes with Hecke operators with respect to the inclusion of the Langlands dual groups $\check{H}\,\widetilde{\rightarrow }\, \mathrm {SO}_{2n}\stackrel{}{\hookrightarrow } \mathrm {SO}_{2n+1}\,\widetilde{\rightarrow }\,\check{G}$. For $m=n+1$ we show that the functor $F_H: \mathrm {D}(\mathrm {Bun}_G)\rightarrow \mathrm {D}(\mathrm {Bun}_H)$ commutes with Hecke operators with respect to the inclusion of the Langlands dual groups $\check{G}\,\widetilde{\rightarrow }\, \mathrm {SO}_{2n+1}\stackrel{}{\hookrightarrow } \mathrm {SO}_{2n+2}\,\widetilde{\rightarrow }\, \check{H}$.
In other cases the relation is more complicated and involves the $\mathrm {SL}_2$ of Arthur. As a step of the proof, we establish the geometric theta-lifting for the dual pair $\mathrm {GL}_m, \mathrm {GL}_n$. Our global results are derived from the corresponding local ones, which provide a geometric analog of a theorem of Rallis.
LA - eng
KW - theta-lifting; geometric Langlands; Langlands functoriality; theta-sheaf
UR - http://eudml.org/doc/272238
ER -
References
top- [1] J. Adams, -functoriality for dual pairs, Astérisque 171-172 (1989), 85–129. Zbl0715.22016
- [2] A. A. Beilinson, J. Bernstein & P. Deligne, Faisceaux pervers, Astérisque100 (1982), 5–171. Zbl0536.14011MR751966
- [3] A. A. Beilinson & V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigen-sheaves, preprint http://www.math.uchicago.edu/~mitya/langlands.html. Zbl0864.14007MR1385674
- [4] T. Braden, Hyperbolic localization of intersection cohomology, Transform. Groups8 (2003), 209–216. Zbl1026.14005MR1996415
- [5] A. Braverman & D. Gaitsgory, Geometric Eisenstein series, Invent. Math.150 (2002), 287–384. Zbl1046.11048MR1933587
- [6] E. Frenkel, D. Gaitsgory & K. Vilonen, Whittaker patterns in the geometry of moduli spaces of bundles on curves, Ann. of Math.153 (2001), 699–748. Zbl1070.11050MR1836286
- [7] E. Frenkel, D. Gaitsgory & K. Vilonen, On the geometric Langlands conjecture, J. Amer. Math. Soc.15 (2002), 367–417. Zbl1071.11039MR1887638
- [8] D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math.144 (2001), 253–280. Zbl1072.14055
- [9] D. Gaitsgory, On a vanishing conjecture appearing in the geometric Langlands correspondence, Ann. of Math.160 (2004), 617–682. Zbl1129.11050MR2123934
- [10] D. Gaitsgory, On de Jong’s conjecture, Israel J. Math.157 (2007), 155–191. Zbl1123.11020MR2342444
- [11] D. Gaitsgory & D. Nadler, Spherical varieties and Langlands duality, Mosc. Math. J.10 (2010), 65–137. Zbl1207.22013MR2668830
- [12] R. Howe, Another look at the local -correspondence for an unramified dual pair, in Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989), Israel Math. Conf. Proc. 2, Weizmann, 1990, 93–124. Zbl0722.22010MR1159101
- [13] M. Kapranov & E. Vasserot, Vertex algebras and the formal loop space, Publ. Math. I.H.É.S. 100 (2004), 209–269. Zbl1106.17038MR2102701
- [14] S. S. Kudla, On the local theta-correspondence, Invent. Math.83 (1986), 229–255. Zbl0583.22010MR818351
- [15] S. S. Kudla, Notes on the local theta correspondence, lecture notes http://www.math.toronto.edu/~skudla/castle.pdf, 1996. Zbl0583.22010
- [16] V. Lafforgue & S. Lysenko, Geometric Weil representation: local field case, Compos. Math.145 (2009), 56–88. Zbl1220.22015
- [17] Y. Laszlo & M. Olsson, The six operations for sheaves on Artin stacks. II. Adic coefficients, Publ. Math. I.H.É.S. 107 (2008), 169–210. Zbl1191.14003
- [18] G. Laumon, Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil, Publ. Math. I.H.É.S. 65 (1987), 131–210. Zbl0641.14009
- [19] S. Lysenko, Moduli of metaplectic bundles on curves and theta-sheaves, Ann. Sci. École Norm. Sup.39 (2006), 415–466. Zbl1111.14029
- [20] S. Lysenko, Geometric Waldspurger periods, Compos. Math.144 (2008), 377–438. Zbl1209.14010
- [21] I. Mirković & K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math.166 (2007), 95–143. Zbl1138.22013
- [22] C. Mœglin, M.-F. Vignéras & J.-L. Waldspurger, Correspondances de Howe sur un corps -adique, Lecture Notes in Math. 1291, Springer, 1987. Zbl0642.22002
- [23] S. Rallis, Langlands’ functoriality and the Weil representation, Amer. J. Math.104 (1982), 469–515. Zbl0532.22016
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.