Geometric theta-lifting for the dual pair
Annales scientifiques de l'École Normale Supérieure (2011)
- Volume: 44, Issue: 3, page 427-493
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. Adams, -functoriality for dual pairs, Astérisque 171-172 (1989), 85–129. Zbl0715.22016
- [2] A. A. Beilinson, J. Bernstein & P. Deligne, Faisceaux pervers, Astérisque100 (1982), 5–171. Zbl0536.14011MR751966
- [3] A. A. Beilinson & V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigen-sheaves, preprint http://www.math.uchicago.edu/~mitya/langlands.html. Zbl0864.14007MR1385674
- [4] T. Braden, Hyperbolic localization of intersection cohomology, Transform. Groups8 (2003), 209–216. Zbl1026.14005MR1996415
- [5] A. Braverman & D. Gaitsgory, Geometric Eisenstein series, Invent. Math.150 (2002), 287–384. Zbl1046.11048MR1933587
- [6] E. Frenkel, D. Gaitsgory & K. Vilonen, Whittaker patterns in the geometry of moduli spaces of bundles on curves, Ann. of Math.153 (2001), 699–748. Zbl1070.11050MR1836286
- [7] E. Frenkel, D. Gaitsgory & K. Vilonen, On the geometric Langlands conjecture, J. Amer. Math. Soc.15 (2002), 367–417. Zbl1071.11039MR1887638
- [8] D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math.144 (2001), 253–280. Zbl1072.14055
- [9] D. Gaitsgory, On a vanishing conjecture appearing in the geometric Langlands correspondence, Ann. of Math.160 (2004), 617–682. Zbl1129.11050MR2123934
- [10] D. Gaitsgory, On de Jong’s conjecture, Israel J. Math.157 (2007), 155–191. Zbl1123.11020MR2342444
- [11] D. Gaitsgory & D. Nadler, Spherical varieties and Langlands duality, Mosc. Math. J.10 (2010), 65–137. Zbl1207.22013MR2668830
- [12] R. Howe, Another look at the local -correspondence for an unramified dual pair, in Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989), Israel Math. Conf. Proc. 2, Weizmann, 1990, 93–124. Zbl0722.22010MR1159101
- [13] M. Kapranov & E. Vasserot, Vertex algebras and the formal loop space, Publ. Math. I.H.É.S. 100 (2004), 209–269. Zbl1106.17038MR2102701
- [14] S. S. Kudla, On the local theta-correspondence, Invent. Math.83 (1986), 229–255. Zbl0583.22010MR818351
- [15] S. S. Kudla, Notes on the local theta correspondence, lecture notes http://www.math.toronto.edu/~skudla/castle.pdf, 1996. Zbl0583.22010
- [16] V. Lafforgue & S. Lysenko, Geometric Weil representation: local field case, Compos. Math.145 (2009), 56–88. Zbl1220.22015
- [17] Y. Laszlo & M. Olsson, The six operations for sheaves on Artin stacks. II. Adic coefficients, Publ. Math. I.H.É.S. 107 (2008), 169–210. Zbl1191.14003
- [18] G. Laumon, Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil, Publ. Math. I.H.É.S. 65 (1987), 131–210. Zbl0641.14009
- [19] S. Lysenko, Moduli of metaplectic bundles on curves and theta-sheaves, Ann. Sci. École Norm. Sup.39 (2006), 415–466. Zbl1111.14029
- [20] S. Lysenko, Geometric Waldspurger periods, Compos. Math.144 (2008), 377–438. Zbl1209.14010
- [21] I. Mirković & K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math.166 (2007), 95–143. Zbl1138.22013
- [22] C. Mœglin, M.-F. Vignéras & J.-L. Waldspurger, Correspondances de Howe sur un corps -adique, Lecture Notes in Math. 1291, Springer, 1987. Zbl0642.22002
- [23] S. Rallis, Langlands’ functoriality and the Weil representation, Amer. J. Math.104 (1982), 469–515. Zbl0532.22016