Moduli of metaplectic bundles on curves and theta-sheaves

Sergey Lysenko[1]

  • [1] Université Paris 6 Institut de mathématiques Analyse algébrique 175 rue du Chevaleret 75013 Paris (France)

Annales scientifiques de l'École Normale Supérieure (2006)

  • Volume: 39, Issue: 3, page 415-466
  • ISSN: 0012-9593

How to cite

top

Lysenko, Sergey. "Moduli of metaplectic bundles on curves and theta-sheaves." Annales scientifiques de l'École Normale Supérieure 39.3 (2006): 415-466. <http://eudml.org/doc/82690>.

@article{Lysenko2006,
affiliation = {Université Paris 6 Institut de mathématiques Analyse algébrique 175 rue du Chevaleret 75013 Paris (France)},
author = {Lysenko, Sergey},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {metaplectic bundles; curves; Hecke eigensheaves},
language = {eng},
number = {3},
pages = {415-466},
publisher = {Elsevier},
title = {Moduli of metaplectic bundles on curves and theta-sheaves},
url = {http://eudml.org/doc/82690},
volume = {39},
year = {2006},
}

TY - JOUR
AU - Lysenko, Sergey
TI - Moduli of metaplectic bundles on curves and theta-sheaves
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 3
SP - 415
EP - 466
LA - eng
KW - metaplectic bundles; curves; Hecke eigensheaves
UR - http://eudml.org/doc/82690
ER -

References

top
  1. [1] Beauville A., Laszlo Y., Conformal blocks and generalized theta functions, Comm. Math. Phys.164 (1994) 385-419. Zbl0815.14015MR1289330
  2. [2] Beauville A., Laszlo Y., Un lemme de descente, C. R. Acad. Sci. Paris Série I320 (1995) 335-340. Zbl0852.13005MR1320381
  3. [3] Białynicki-Birula A., Some theorems on actions of algebraic groups, Ann. of Math. (2)98 (1973) 480-497. Zbl0275.14007
  4. [4] Braden T., Hyperbolic localization of intersection cohomology, Transform. Groups8 (3) (2003) 209-216. Zbl1026.14005MR1996415
  5. [5] Braverman A., Gaitsgory D., Geometric Eisenstein series, Invent. Math.150 (2002) 287-384. Zbl1046.11048MR1933587
  6. [6] Breen L., Bitorseurs et cohomologie non abélienne, in: The Grothendieck Festschrift, vol. 1, Progress in Math., vol. 86, Birkhäuser, Boston, 1990, pp. 401-476. Zbl0743.14034MR1086889
  7. [7] Beilinson A., Drinfeld V., Quantization of Hitchin's integrable system and Hecke eigen-sheaves, Available at:, http://www.math.uchicago.edu/~arinkin/langlands/. Zbl0864.14007
  8. [8] Deligne P., Le déterminant de la cohomologie, in: Current Trends in Arithmetical Algebraic Geometry, Arcata, CA, 1985, Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 93-177. Zbl0629.14008MR902592
  9. [9] Deligne P., Letter to D. Kazhdan, 6 March 1985. 
  10. [10] Deligne P., Milne J.S., Tannakian categories, in: Hodge Cycles, Motives and Shimura Varieties, Lecture Notes in Math., vol. 900, Springer, Berlin, 1982. Zbl0477.14004MR654325
  11. [11] Drinfeld V., Sympson C., B-structures on G-bundles and local triviality, Math. Res. Letters2 (1995) 823-829. Zbl0874.14043MR1362973
  12. [12] Faltings G., Algebraic loop groups and moduli spaces of bundles, J. European Math. Soc.5 (2003) 41-68. Zbl1020.14002MR1961134
  13. [13] Gaitsgory D., Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math.144 (2) (2001) 253-280. Zbl1072.14055MR1826370
  14. [14] Ginzburg V.A., Perverse sheaves on a Loop group and Langlands' duality, alg-geom/9511007. 
  15. [15] Howe R., θ-series and invariant theory, Proc. Sympos. Pure Math., Part 133 (1979) 275-285. Zbl0423.22016
  16. [16] Laumon G., Transformation de Fourier homogène, Bull. Soc. Math. France131 (4) (2003) 527-551. Zbl1088.11044MR2044494
  17. [17] Laszlo Y., Linearization of group stack actions and the Picard group of the moduli of SL r / μ s -bundles on a curve, Bull. Soc. Math. France125 (4) (1990) 529-545. Zbl0936.14024MR1630906
  18. [18] Lion G., Vergne M., The Weil Representation, Maslov Index and Theta Series, Progress in Math., vol. 6, Birkhäuser, Boston, 1980. Zbl0444.22005MR573448
  19. [19] Moore C., Group extensions of p-adic and adelic linear groups, Publ. IHÉS35 (1968) 5-70. Zbl0159.03203MR244258
  20. [20] Mirković I., Vilonen K., Geometric Langlands duality and representations of algebraic groups over commutative rings, math.RT/0401222, Ann. Math., in press. Zbl1138.22013
  21. [21] Moeglin C., Vigneras M.-F., Waldspurger J.L., Correspondence de Howe sur un corps p-adique, Lecture Notes in Math., vol. 1291, Springer, Berlin, 1987. Zbl0642.22002MR1041060
  22. [22] Prasad D., Weil Representation, Howe duality, and the Theta correspondence, (lectures given in Montreal), http://www.mri.ernet.in/mathweb/dprasad.html. Zbl0820.11027
  23. [23] Weil A., Sur certains groupes d'opérateurs unitaires, Acta Math.111 (1964) 143-211. Zbl0203.03305MR165033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.