On the Kähler Rank of Compact Complex Surfaces
Bulletin de la Société Mathématique de France (2008)
- Volume: 136, Issue: 2, page 243-260
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topToma, Matei. "On the Kähler Rank of Compact Complex Surfaces." Bulletin de la Société Mathématique de France 136.2 (2008): 243-260. <http://eudml.org/doc/272489>.
@article{Toma2008,
abstract = {Harvey and Lawson introduced the Kähler rank and computed it in connection to the cone of positive exact currents of bidimension $(1,1)$ for many classes of compact complex surfaces. In this paper we extend these computations to the only further known class of surfaces not considered by them, that of Kato surfaces. Our main tool is the reduction to the dynamics of associated holomorphic contractions $(\mathbb \{C\}^2,0)\rightarrow (\mathbb \{C\}^2,0)$.},
author = {Toma, Matei},
journal = {Bulletin de la Société Mathématique de France},
keywords = {compact complex surface; global spherical shell; closed positive current; iteration of polynomial maps},
language = {eng},
number = {2},
pages = {243-260},
publisher = {Société mathématique de France},
title = {On the Kähler Rank of Compact Complex Surfaces},
url = {http://eudml.org/doc/272489},
volume = {136},
year = {2008},
}
TY - JOUR
AU - Toma, Matei
TI - On the Kähler Rank of Compact Complex Surfaces
JO - Bulletin de la Société Mathématique de France
PY - 2008
PB - Société mathématique de France
VL - 136
IS - 2
SP - 243
EP - 260
AB - Harvey and Lawson introduced the Kähler rank and computed it in connection to the cone of positive exact currents of bidimension $(1,1)$ for many classes of compact complex surfaces. In this paper we extend these computations to the only further known class of surfaces not considered by them, that of Kato surfaces. Our main tool is the reduction to the dynamics of associated holomorphic contractions $(\mathbb {C}^2,0)\rightarrow (\mathbb {C}^2,0)$.
LA - eng
KW - compact complex surface; global spherical shell; closed positive current; iteration of polynomial maps
UR - http://eudml.org/doc/272489
ER -
References
top- [1] W. P. Barth, K. Hulek, C. A. M. Peters & A. Van de Ven – Compact complex surfaces, second éd., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 4, Springer, 2004. Zbl0718.14023MR2030225
- [2] J.-P. Demailly – « Complex analytic and algebraic geometry », http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf, 2007.
- [3] G. Dloussky – « Structure des surfaces de Kato », Mém. Soc. Math. France (N.S.) (1984), p. 120. Zbl0543.32012MR763959
- [4] —, « Sur la classification des germes d’applications holomorphes contractantes », Math. Ann.280 (1988), p. 649–661. Zbl0677.32004MR939924
- [5] G. Dloussky & K. Oeljeklaus – « Vector fields and foliations on compact surfaces of class », Ann. Inst. Fourier (Grenoble) 49 (1999), p. 1503–1545. Zbl0978.32021MR1723825
- [6] C. Favre – « Classification of 2-dimensional contracting rigid germs and Kato surfaces. I », J. Math. Pures Appl. (9) 79 (2000), p. 475–514. Zbl0983.32023MR1759437
- [7] H. Grauert & R. Remmert – « Plurisubharmonische Funktionen in komplexen Räumen », Math. Z.65 (1956), p. 175–194. Zbl0070.30403MR81960
- [8] R. Harvey & H. B. Lawson, Jr. – « An intrinsic characterization of Kähler manifolds », Invent. Math.74 (1983), p. 169–198. Zbl0553.32008MR723213
- [9] M. Kato – « Compact complex manifolds containing “global” spherical shells », Proc. Japan Acad.53 (1977), p. 15–16. Zbl0379.32023MR440076
- [10] A. Lamari – « Courants kählériens et surfaces compactes », Ann. Inst. Fourier (Grenoble) 49 (1999), p. 263–285. Zbl0926.32026MR1688140
- [11] —, « Le cône kählérien d’une surface », J. Math. Pures Appl. (9) 78 (1999), p. 249–263. Zbl0941.32007
- [12] M. Meo – « Image inverse d’un courant positif fermé par une application analytique surjective », C. R. Acad. Sci. Paris Sér. I Math.322 (1996), p. 1141–1144. Zbl0858.32012MR1396655
- [13] I. Nakamura – « On surfaces of class with curves. II », Tohoku Math. J. (2) 42 (1990), p. 475–516. Zbl0732.14019MR1076173
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.