Irregularity of an analogue of the Gauss-Manin systems

Céline Roucairol

Bulletin de la Société Mathématique de France (2006)

  • Volume: 134, Issue: 2, page 269-286
  • ISSN: 0037-9484

Abstract

top
In 𝒟 -modules theory, Gauss-Manin systems are defined by the direct image of the structure sheaf 𝒪 by a morphism. A major theorem says that these systems have only regular singularities. This paper examines the irregularity of an analogue of the Gauss-Manin systems. It consists in the direct image complex f + ( 𝒪 e g ) of a 𝒟 -module twisted by the exponential of a polynomial g by another polynomial  f , where f and g are two polynomials in two variables. The analogue of the Gauss-Manin systems can have irregular singularities (at finite distance and at infinity). We express an invariant associated with the irregularity of these systems at  c 1 by the geometry of the map ( f , g ) .

How to cite

top

Roucairol, Céline. "Irregularity of an analogue of the Gauss-Manin systems." Bulletin de la Société Mathématique de France 134.2 (2006): 269-286. <http://eudml.org/doc/272495>.

@article{Roucairol2006,
abstract = {In $\mathcal \{D\}$-modules theory, Gauss-Manin systems are defined by the direct image of the structure sheaf $\mathcal \{O\}$ by a morphism. A major theorem says that these systems have only regular singularities. This paper examines the irregularity of an analogue of the Gauss-Manin systems. It consists in the direct image complex $f_+(\mathcal \{O\}\hspace\{0.55542pt\}\{\rm e\hspace\{0.55542pt\}\}^g)$ of a $\mathcal \{D\}$-module twisted by the exponential of a polynomial $g$ by another polynomial $f$, where $f$ and $g$ are two polynomials in two variables. The analogue of the Gauss-Manin systems can have irregular singularities (at finite distance and at infinity). We express an invariant associated with the irregularity of these systems at $c\in \mathbb \{P\}^1$ by the geometry of the map $(f,g)$.},
author = {Roucairol, Céline},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Gauss-Manin connection; irregularity complex; direct image; elementary $\mathcal \{D\}$-modules},
language = {eng},
number = {2},
pages = {269-286},
publisher = {Société mathématique de France},
title = {Irregularity of an analogue of the Gauss-Manin systems},
url = {http://eudml.org/doc/272495},
volume = {134},
year = {2006},
}

TY - JOUR
AU - Roucairol, Céline
TI - Irregularity of an analogue of the Gauss-Manin systems
JO - Bulletin de la Société Mathématique de France
PY - 2006
PB - Société mathématique de France
VL - 134
IS - 2
SP - 269
EP - 286
AB - In $\mathcal {D}$-modules theory, Gauss-Manin systems are defined by the direct image of the structure sheaf $\mathcal {O}$ by a morphism. A major theorem says that these systems have only regular singularities. This paper examines the irregularity of an analogue of the Gauss-Manin systems. It consists in the direct image complex $f_+(\mathcal {O}\hspace{0.55542pt}{\rm e\hspace{0.55542pt}}^g)$ of a $\mathcal {D}$-module twisted by the exponential of a polynomial $g$ by another polynomial $f$, where $f$ and $g$ are two polynomials in two variables. The analogue of the Gauss-Manin systems can have irregular singularities (at finite distance and at infinity). We express an invariant associated with the irregularity of these systems at $c\in \mathbb {P}^1$ by the geometry of the map $(f,g)$.
LA - eng
KW - Gauss-Manin connection; irregularity complex; direct image; elementary $\mathcal {D}$-modules
UR - http://eudml.org/doc/272495
ER -

References

top
  1. [1] Séminaire Heidelberg-Strasbourg, 1966Séminaire Heidelberg-Strasbourg, 1966/1967: Dualité de Poincaré – Publication I.R.M.A. Strasbourg, No. 3, vol. 3, 1969. 
  2. [2] P. Deligne – Équations différentielles à points singuliers réguliers, Lecture Notes in Math., vol. 163, Springer-Verlag, 1970. Zbl0244.14004MR417174
  3. [3] —, « Comparaison avec la théorie transcendante », Lecture Notes in Math., vol. 340, Springer-Verlag, 1973, p. 116–164. Zbl0266.14009
  4. [4] A. Grothendieck – « On the De Rham cohomology of algebraic varieties », Publ. Math. Inst. Hautes Études Sci.29 (1966), p. 93–103. Zbl0145.17602MR199194
  5. [5] R. Hartshorne – « Algebraic Geometry », Graduate Texts in Math., vol. 52, Springer-Verlag, New York, 1977. Zbl0367.14001MR463157
  6. [6] M. Kashiwara – « On the maximally overdetermined systems of differential equations », Publ. RIMS, Kyoto Univ. 10 (1975), p. 563–579. Zbl0313.58019MR370665
  7. [7] F. Maaref – « Sur un analogue irrégulier de la connexion de Gauss-Manin », Ann. Fac. Sci. Toul. VIII (1999), p. 117–124. Zbl0965.32020MR1721566
  8. [8] Z. Mebkhout – « Le théorème de comparaison entre cohomologies de De Rham d’une variété algébrique complexe et le théorème d’existence de Riemann », Publ. Math. Inst. Hautes Études Sci.69 (1989), p. 47–89. Zbl0709.14015MR1019961
  9. [9] —, « Le théorème de positivité de l’irrégularité pour les 𝒟 X -modules, Grothendieck Festschrift III », Progress in Math., vol. 88, 1990, p. 84–131. Zbl0731.14007
  10. [10] —, « Le théorème de positivité, le théorème de comparaison, le théorème d’existence de Riemann », Séminaires et Congrès8 (2004), p. 165–307. Zbl1082.32006
  11. [11] Z. Mebkhout & L. Narváez-Macarro – « Le théorème de constructibilité de Kashiwara, Images directes et constructibilité », Travaux en Cours, vol. 46, Hermann, Paris, 1993, p. 47–98. Zbl0847.32012
  12. [12] C. Sabbah – « On the comparison theorem for elementary irregular 𝒟 -modules », Nagoya J. Math.141 (1996), p. 107–124. Zbl0858.32013MR1383794
  13. [13] L. Trãng & C. Weber – « Polynômes à fibres rationnelles et conjecture jacobienne à deux variables », C. R. Acad. Sci. Paris Sér. I Math.320 (1995), p. 581–584. Zbl0834.14007MR1322341

NotesEmbed ?

top

You must be logged in to post comments.