Irregularity of an analogue of the Gauss-Manin systems

Céline Roucairol

Bulletin de la Société Mathématique de France (2006)

  • Volume: 134, Issue: 2, page 269-286
  • ISSN: 0037-9484

Abstract

top
In 𝒟 -modules theory, Gauss-Manin systems are defined by the direct image of the structure sheaf 𝒪 by a morphism. A major theorem says that these systems have only regular singularities. This paper examines the irregularity of an analogue of the Gauss-Manin systems. It consists in the direct image complex f + ( 𝒪 e g ) of a 𝒟 -module twisted by the exponential of a polynomial g by another polynomial  f , where f and g are two polynomials in two variables. The analogue of the Gauss-Manin systems can have irregular singularities (at finite distance and at infinity). We express an invariant associated with the irregularity of these systems at  c 1 by the geometry of the map ( f , g ) .

How to cite

top

Roucairol, Céline. "Irregularity of an analogue of the Gauss-Manin systems." Bulletin de la Société Mathématique de France 134.2 (2006): 269-286. <http://eudml.org/doc/272495>.

@article{Roucairol2006,
abstract = {In $\mathcal \{D\}$-modules theory, Gauss-Manin systems are defined by the direct image of the structure sheaf $\mathcal \{O\}$ by a morphism. A major theorem says that these systems have only regular singularities. This paper examines the irregularity of an analogue of the Gauss-Manin systems. It consists in the direct image complex $f_+(\mathcal \{O\}\hspace\{0.55542pt\}\{\rm e\hspace\{0.55542pt\}\}^g)$ of a $\mathcal \{D\}$-module twisted by the exponential of a polynomial $g$ by another polynomial $f$, where $f$ and $g$ are two polynomials in two variables. The analogue of the Gauss-Manin systems can have irregular singularities (at finite distance and at infinity). We express an invariant associated with the irregularity of these systems at $c\in \mathbb \{P\}^1$ by the geometry of the map $(f,g)$.},
author = {Roucairol, Céline},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Gauss-Manin connection; irregularity complex; direct image; elementary $\mathcal \{D\}$-modules},
language = {eng},
number = {2},
pages = {269-286},
publisher = {Société mathématique de France},
title = {Irregularity of an analogue of the Gauss-Manin systems},
url = {http://eudml.org/doc/272495},
volume = {134},
year = {2006},
}

TY - JOUR
AU - Roucairol, Céline
TI - Irregularity of an analogue of the Gauss-Manin systems
JO - Bulletin de la Société Mathématique de France
PY - 2006
PB - Société mathématique de France
VL - 134
IS - 2
SP - 269
EP - 286
AB - In $\mathcal {D}$-modules theory, Gauss-Manin systems are defined by the direct image of the structure sheaf $\mathcal {O}$ by a morphism. A major theorem says that these systems have only regular singularities. This paper examines the irregularity of an analogue of the Gauss-Manin systems. It consists in the direct image complex $f_+(\mathcal {O}\hspace{0.55542pt}{\rm e\hspace{0.55542pt}}^g)$ of a $\mathcal {D}$-module twisted by the exponential of a polynomial $g$ by another polynomial $f$, where $f$ and $g$ are two polynomials in two variables. The analogue of the Gauss-Manin systems can have irregular singularities (at finite distance and at infinity). We express an invariant associated with the irregularity of these systems at $c\in \mathbb {P}^1$ by the geometry of the map $(f,g)$.
LA - eng
KW - Gauss-Manin connection; irregularity complex; direct image; elementary $\mathcal {D}$-modules
UR - http://eudml.org/doc/272495
ER -

References

top
  1. [1] Séminaire Heidelberg-Strasbourg, 1966Séminaire Heidelberg-Strasbourg, 1966/1967: Dualité de Poincaré – Publication I.R.M.A. Strasbourg, No. 3, vol. 3, 1969. 
  2. [2] P. Deligne – Équations différentielles à points singuliers réguliers, Lecture Notes in Math., vol. 163, Springer-Verlag, 1970. Zbl0244.14004MR417174
  3. [3] —, « Comparaison avec la théorie transcendante », Lecture Notes in Math., vol. 340, Springer-Verlag, 1973, p. 116–164. Zbl0266.14009
  4. [4] A. Grothendieck – « On the De Rham cohomology of algebraic varieties », Publ. Math. Inst. Hautes Études Sci.29 (1966), p. 93–103. Zbl0145.17602MR199194
  5. [5] R. Hartshorne – « Algebraic Geometry », Graduate Texts in Math., vol. 52, Springer-Verlag, New York, 1977. Zbl0367.14001MR463157
  6. [6] M. Kashiwara – « On the maximally overdetermined systems of differential equations », Publ. RIMS, Kyoto Univ. 10 (1975), p. 563–579. Zbl0313.58019MR370665
  7. [7] F. Maaref – « Sur un analogue irrégulier de la connexion de Gauss-Manin », Ann. Fac. Sci. Toul. VIII (1999), p. 117–124. Zbl0965.32020MR1721566
  8. [8] Z. Mebkhout – « Le théorème de comparaison entre cohomologies de De Rham d’une variété algébrique complexe et le théorème d’existence de Riemann », Publ. Math. Inst. Hautes Études Sci.69 (1989), p. 47–89. Zbl0709.14015MR1019961
  9. [9] —, « Le théorème de positivité de l’irrégularité pour les 𝒟 X -modules, Grothendieck Festschrift III », Progress in Math., vol. 88, 1990, p. 84–131. Zbl0731.14007
  10. [10] —, « Le théorème de positivité, le théorème de comparaison, le théorème d’existence de Riemann », Séminaires et Congrès8 (2004), p. 165–307. Zbl1082.32006
  11. [11] Z. Mebkhout & L. Narváez-Macarro – « Le théorème de constructibilité de Kashiwara, Images directes et constructibilité », Travaux en Cours, vol. 46, Hermann, Paris, 1993, p. 47–98. Zbl0847.32012
  12. [12] C. Sabbah – « On the comparison theorem for elementary irregular 𝒟 -modules », Nagoya J. Math.141 (1996), p. 107–124. Zbl0858.32013MR1383794
  13. [13] L. Trãng & C. Weber – « Polynômes à fibres rationnelles et conjecture jacobienne à deux variables », C. R. Acad. Sci. Paris Sér. I Math.320 (1995), p. 581–584. Zbl0834.14007MR1322341

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.