Sur un analogue irrégulier de la connexion de Gauss-Manin

Fayçal Maaref

Annales de la Faculté des sciences de Toulouse : Mathématiques (1999)

  • Volume: 8, Issue: 1, page 117-124
  • ISSN: 0240-2963

How to cite

top

Maaref, Fayçal. "Sur un analogue irrégulier de la connexion de Gauss-Manin." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.1 (1999): 117-124. <http://eudml.org/doc/73473>.

@article{Maaref1999,
author = {Maaref, Fayçal},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {monodromy; Milnor fibration; Gauss-Manin connection; polynomial mapping; -module},
language = {fre},
number = {1},
pages = {117-124},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Sur un analogue irrégulier de la connexion de Gauss-Manin},
url = {http://eudml.org/doc/73473},
volume = {8},
year = {1999},
}

TY - JOUR
AU - Maaref, Fayçal
TI - Sur un analogue irrégulier de la connexion de Gauss-Manin
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1999
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 1
SP - 117
EP - 124
LA - fre
KW - monodromy; Milnor fibration; Gauss-Manin connection; polynomial mapping; -module
UR - http://eudml.org/doc/73473
ER -

References

top
  1. [1] Dimca ( A.) et Saito ( M.) .— On the cohomology of the general fiber of a polynomial map, Compositio Math.85 (1993), pp. 299-309. Zbl0824.14016MR1214449
  2. [2] Borel ( A.) et al.. - Algebraic D-modules, Perspectives in Math.2, Academic Press, Boston, 1987. Zbl0642.32001MR882000
  3. [3] Godement ( R.) .- Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1964. 
  4. [4] Iversen ( B.) .- Cohomology of sheaves, Universitext, Springer Verlag, Heidelberg, 1986. Zbl1272.55001MR842190
  5. [5] Katz ( N.) .- Nilpotent connections and the monodromy theorem, Publ. Math. I.H.E.S.39 (1971), pp. 355-412. Zbl0221.14007MR291177
  6. [6] Le Dung Trang . — Faisceaux constructibles quasi-unipotents, Séminaire Bourbaki (1981), 581. Zbl0525.32024
  7. [7] Mebkhout ( Z.) .- Le formalisme des six opérations de Grothendieck pour les D-modules cohérents, Hermann, Paris, 1989. Zbl0686.14020MR1008245
  8. [8] Mebkhout ( Z.) .— Le théorème de positivité de l'irrégularité pour les D-modules, The Grothendieck Festschrift, Progress in Math., Birkhaüser, Boston, 88 (1990), pp. 83-132. Zbl0731.14007MR1106912
  9. [9] Pham ( F.) .- livre Singularités des systèmes de Gauss-Manin, Progress in Math., Birkhaüser, Boston, 2 (1980). Zbl0524.32015MR553954
  10. [10] Sabba ( C.) .- On the comparison theorem for elementary irregular D-modules, Nagoya J. Math.141 (1996). Zbl0858.32013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.