On square functions associated to sectorial operators
Bulletin de la Société Mathématique de France (2004)
- Volume: 132, Issue: 1, page 137-156
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topLe Merdy, Christian. "On square functions associated to sectorial operators." Bulletin de la Société Mathématique de France 132.1 (2004): 137-156. <http://eudml.org/doc/272511>.
@article{LeMerdy2004,
abstract = {We give new results on square functions\[ \Vert \{x\}\Vert \_F = \Big \Vert \{\Big (\int \_\{0\}^\{\infty \} \bigl \vert F(tA)x\bigr \vert ^\{2\} \frac\{\hspace\{0.55542pt\}\{\rm d\} t\}\{t\}\Big )^\{1/2\}\}\Big \Vert \_\{p\} \]associated to a sectorial operator $A$ on $L^p$ for $1<p<\infty $. Under the assumption that $A$ is actually $R$-sectorial, we prove equivalences of the form $K^\{-1\}\Vert \{x\}\Vert _\{G\} \le \Vert \{x\}\Vert _\{F\}\le K\Vert \{x\}\Vert _\{G\}$ for suitable functions $F, G$. We also show that $A$ has a bounded $H^\{\infty \}$ functional calculus with respect to $\Vert \{\, .\, \}\Vert _\{F\}$. Then we apply our results to the study of conditions under which we have an estimate $\Vert \{(\int _\{0\}^\{\infty \}\vert C\{\rm e\}^\{-tA\} (x)\vert ^2 \{\rm d\}t)^\{1/2\}\Vert \}_\{q\} \le M \Vert \{x\}\Vert _\{p\}$, when $-A$ generates a bounded semigroup $\{\rm e\}^\{-tA\}$ on $L^p$ and $C\colon D(A)\rightarrow L^q$ is a linear mapping.},
author = {Le Merdy, Christian},
journal = {Bulletin de la Société Mathématique de France},
keywords = {sectorial operators; $H^\{\infty \}$ functional calculus; square functions; $R$-boundedness; admissibility},
language = {eng},
number = {1},
pages = {137-156},
publisher = {Société mathématique de France},
title = {On square functions associated to sectorial operators},
url = {http://eudml.org/doc/272511},
volume = {132},
year = {2004},
}
TY - JOUR
AU - Le Merdy, Christian
TI - On square functions associated to sectorial operators
JO - Bulletin de la Société Mathématique de France
PY - 2004
PB - Société mathématique de France
VL - 132
IS - 1
SP - 137
EP - 156
AB - We give new results on square functions\[ \Vert {x}\Vert _F = \Big \Vert {\Big (\int _{0}^{\infty } \bigl \vert F(tA)x\bigr \vert ^{2} \frac{\hspace{0.55542pt}{\rm d} t}{t}\Big )^{1/2}}\Big \Vert _{p} \]associated to a sectorial operator $A$ on $L^p$ for $1<p<\infty $. Under the assumption that $A$ is actually $R$-sectorial, we prove equivalences of the form $K^{-1}\Vert {x}\Vert _{G} \le \Vert {x}\Vert _{F}\le K\Vert {x}\Vert _{G}$ for suitable functions $F, G$. We also show that $A$ has a bounded $H^{\infty }$ functional calculus with respect to $\Vert {\, .\, }\Vert _{F}$. Then we apply our results to the study of conditions under which we have an estimate $\Vert {(\int _{0}^{\infty }\vert C{\rm e}^{-tA} (x)\vert ^2 {\rm d}t)^{1/2}\Vert }_{q} \le M \Vert {x}\Vert _{p}$, when $-A$ generates a bounded semigroup ${\rm e}^{-tA}$ on $L^p$ and $C\colon D(A)\rightarrow L^q$ is a linear mapping.
LA - eng
KW - sectorial operators; $H^{\infty }$ functional calculus; square functions; $R$-boundedness; admissibility
UR - http://eudml.org/doc/272511
ER -
References
top- [1] W. Arendt & S. Bu – « The operator valued Marcinkiewicz multiplier theorem and maximal regularity », Math. Z.240 (2002), p. 311–343. Zbl1018.47008MR1900314
- [2] P. Auscher, X. Duong & A. McIntosh – in preparation.
- [3] P. Auscher, A. McIntosh & A. Nahmod – « Holomorphic functional calculi of operators, quadratic estimates and interpolation », Indiana Univ. Math. J.46 (1997), p. 375–403. Zbl0903.47011MR1481596
- [4] P. Clément, B. De Pagter, F. Sukochev & H. Witvliet – « Schauder decompositions and multiplier theorems », Studia Math.138 (2000), p. 135–163. Zbl0955.46004MR1749077
- [5] P. Clément & J. Pruss – « An operator valued transference principle and maximal regularity on vector valued -spaces », Proc. of the Sixth International Conference on Evolution Equations and their Applications in Physical and Life Sciences (Bad Herrenalb, 1998) (G. Lumer & L. Weis, éds.), Marcel Dekker, New-York, 2001, p. 67–87. Zbl0988.35100MR1816437
- [6] M. Cowling, I. Doust, A. McIntosh & A. Yagi – « Banach space operators with a bounded functional calculus », J. Austr. Math. Soc.60 (1996), p. 51–89. Zbl0853.47010MR1364554
- [7] J. Garnett – Bounded analytic functions, Pure and applied Mathematics, vol. 96, Academic Press, 1981. Zbl0469.30024MR628971
- [8] P. Grabowsky & F. Callier – « Admissible observation operators. Semigroup criteria of admissibility », Int. Equ. Oper. Theory25 (1996), p. 182–198. Zbl0856.93021MR1388679
- [9] B. Jacob & J. Partington – « The Weiss conjecture on admissibility of observation operators for contraction semigroups », Int. Equ. Oper. Theory40 (2001), p. 231–243. Zbl1031.93107MR1831828
- [10] B. Jacob, J. Partington & S. Pott – « Admissible and weakly admissible observation operators for the right shift semigroup », Proc. Edinburgh Math. Soc.45 (2002), p. 353–362. Zbl1176.47065MR1912645
- [11] B. Jacob, O. Staffans & H. Zwart – « Weak admissibility does not imply admissibility for analytic semigroups », 2003. Zbl1157.93421MR2020649
- [12] B. Jacob & H. Zwart – « Disproof of two conjectures of George Weiss », Preprint, 2000.
- [13] N. Kalton & G. Lancien – « A solution to the problem of -maximal regularity », Math. Z.235 (2000), p. 559–568. Zbl1010.47024MR1800212
- [14] N. Kalton & L. Weis – « The calculus and sums of closed operators », Math. Ann.321 (2001), p. 319–345. Zbl0992.47005MR1866491
- [15] F. Lancien, G. Lancien & C. Le Merdy – « A joint functional calculus for sectorial operators with commuting resolvents », Proc. London Math. Soc.77 (1998), p. 387–414. Zbl0904.47015MR1635157
- [16] C. Le Merdy – « The Weiss conjecture for bounded analytic semigroups », J. London Math. Soc. (2) 67 (2003), p. 715–738. Zbl1064.47045MR1967702
- [17] J. Lindenstrauss & L. Tzafriri – Classical Banach spaces II, Springer Verlag, Berlin, 1979. Zbl0403.46022MR540367
- [18] A. McIntosh – « Operators which have an functional calculus », Miniconference on operator theory and partial differential equations, Proc. of CMA, Canberra, vol. 14, 1986, p. 210–231. Zbl0634.47016MR912940
- [19] A. McIntosh & A. Yagi – « Operators of type without a bounded functional calculus », Miniconference on operators in analysis, Proc. of CMA, Canberra, vol. 24, 1989, p. 159–172. Zbl0709.47016MR1060121
- [20] J. Partington & G. Weiss – « Admissible observation operators for the right shift semigroup », Math. Cont. Signals Systems13 (2000), p. 179–192. Zbl0966.93033MR1784262
- [21] L. Weis – « A new approach to maximal -regularity », Proc. of the Sixth International Conference on Evolution Equations and their Applications in Physical and Life Sciences (Bad Herrenalb, 1998) (G. Lumer & L. Weis, éds.), Lecture Notes in Pure and Appl. Math., vol. 215, Marcel Dekker, New-York, 2001, p. 195–214. Zbl0957.00037MR1818002
- [22] —, « Operator valued Fourier multiplier theorems and maximal regularity », Math. Ann.319 (2001), p. 735–758. Zbl0989.47025MR1825406
- [23] G. Weiss – « Admissibility of unbounded control operators », SIAM J. Control Optim.27 (1989), p. 527–545. Zbl0685.93043MR993285
- [24] —, « Admissible observation operators for linear semigroups », Israel J. Math.65 (1989), p. 17–43. Zbl0696.47040MR994732
- [25] —, « Two conjectures on the admissibility of control operators », Estimation and control of distributed parameter systems, Birkäuser Verlag, 1991, p. 367–378. Zbl0763.93041MR1155659
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.