On square functions associated to sectorial operators

Christian Le Merdy

Bulletin de la Société Mathématique de France (2004)

  • Volume: 132, Issue: 1, page 137-156
  • ISSN: 0037-9484

Abstract

top
We give new results on square functions x F = 0 F ( t A ) x 2 d t t 1 / 2 p associated to a sectorial operator A on L p for 1 < p < . Under the assumption that A is actually R -sectorial, we prove equivalences of the form K - 1 x G x F K x G for suitable functions F , G . We also show that A has a bounded H functional calculus with respect to . F . Then we apply our results to the study of conditions under which we have an estimate ( 0 | C e - t A ( x ) | 2 d t ) 1 / 2 q M x p , when - A generates a bounded semigroup e - t A on L p and C : D ( A ) L q is a linear mapping.

How to cite

top

Le Merdy, Christian. "On square functions associated to sectorial operators." Bulletin de la Société Mathématique de France 132.1 (2004): 137-156. <http://eudml.org/doc/272511>.

@article{LeMerdy2004,
abstract = {We give new results on square functions\[ \Vert \{x\}\Vert \_F = \Big \Vert \{\Big (\int \_\{0\}^\{\infty \} \bigl \vert F(tA)x\bigr \vert ^\{2\} \frac\{\hspace\{0.55542pt\}\{\rm d\} t\}\{t\}\Big )^\{1/2\}\}\Big \Vert \_\{p\} \]associated to a sectorial operator $A$ on $L^p$ for $1&lt;p&lt;\infty $. Under the assumption that $A$ is actually $R$-sectorial, we prove equivalences of the form $K^\{-1\}\Vert \{x\}\Vert _\{G\} \le \Vert \{x\}\Vert _\{F\}\le K\Vert \{x\}\Vert _\{G\}$ for suitable functions $F, G$. We also show that $A$ has a bounded $H^\{\infty \}$ functional calculus with respect to $\Vert \{\, .\, \}\Vert _\{F\}$. Then we apply our results to the study of conditions under which we have an estimate $\Vert \{(\int _\{0\}^\{\infty \}\vert C\{\rm e\}^\{-tA\} (x)\vert ^2 \{\rm d\}t)^\{1/2\}\Vert \}_\{q\} \le M \Vert \{x\}\Vert _\{p\}$, when $-A$ generates a bounded semigroup $\{\rm e\}^\{-tA\}$ on $L^p$ and $C\colon D(A)\rightarrow L^q$ is a linear mapping.},
author = {Le Merdy, Christian},
journal = {Bulletin de la Société Mathématique de France},
keywords = {sectorial operators; $H^\{\infty \}$ functional calculus; square functions; $R$-boundedness; admissibility},
language = {eng},
number = {1},
pages = {137-156},
publisher = {Société mathématique de France},
title = {On square functions associated to sectorial operators},
url = {http://eudml.org/doc/272511},
volume = {132},
year = {2004},
}

TY - JOUR
AU - Le Merdy, Christian
TI - On square functions associated to sectorial operators
JO - Bulletin de la Société Mathématique de France
PY - 2004
PB - Société mathématique de France
VL - 132
IS - 1
SP - 137
EP - 156
AB - We give new results on square functions\[ \Vert {x}\Vert _F = \Big \Vert {\Big (\int _{0}^{\infty } \bigl \vert F(tA)x\bigr \vert ^{2} \frac{\hspace{0.55542pt}{\rm d} t}{t}\Big )^{1/2}}\Big \Vert _{p} \]associated to a sectorial operator $A$ on $L^p$ for $1&lt;p&lt;\infty $. Under the assumption that $A$ is actually $R$-sectorial, we prove equivalences of the form $K^{-1}\Vert {x}\Vert _{G} \le \Vert {x}\Vert _{F}\le K\Vert {x}\Vert _{G}$ for suitable functions $F, G$. We also show that $A$ has a bounded $H^{\infty }$ functional calculus with respect to $\Vert {\, .\, }\Vert _{F}$. Then we apply our results to the study of conditions under which we have an estimate $\Vert {(\int _{0}^{\infty }\vert C{\rm e}^{-tA} (x)\vert ^2 {\rm d}t)^{1/2}\Vert }_{q} \le M \Vert {x}\Vert _{p}$, when $-A$ generates a bounded semigroup ${\rm e}^{-tA}$ on $L^p$ and $C\colon D(A)\rightarrow L^q$ is a linear mapping.
LA - eng
KW - sectorial operators; $H^{\infty }$ functional calculus; square functions; $R$-boundedness; admissibility
UR - http://eudml.org/doc/272511
ER -

References

top
  1. [1] W. Arendt & S. Bu – « The operator valued Marcinkiewicz multiplier theorem and maximal regularity », Math. Z.240 (2002), p. 311–343. Zbl1018.47008MR1900314
  2. [2] P. Auscher, X. Duong & A. McIntosh – in preparation. 
  3. [3] P. Auscher, A. McIntosh & A. Nahmod – « Holomorphic functional calculi of operators, quadratic estimates and interpolation », Indiana Univ. Math. J.46 (1997), p. 375–403. Zbl0903.47011MR1481596
  4. [4] P. Clément, B. De Pagter, F. Sukochev & H. Witvliet – « Schauder decompositions and multiplier theorems », Studia Math.138 (2000), p. 135–163. Zbl0955.46004MR1749077
  5. [5] P. Clément & J. Pruss – « An operator valued transference principle and maximal regularity on vector valued L p -spaces », Proc. of the Sixth International Conference on Evolution Equations and their Applications in Physical and Life Sciences (Bad Herrenalb, 1998) (G. Lumer & L. Weis, éds.), Marcel Dekker, New-York, 2001, p. 67–87. Zbl0988.35100MR1816437
  6. [6] M. Cowling, I. Doust, A. McIntosh & A. Yagi – « Banach space operators with a bounded H functional calculus », J. Austr. Math. Soc.60 (1996), p. 51–89. Zbl0853.47010MR1364554
  7. [7] J. Garnett – Bounded analytic functions, Pure and applied Mathematics, vol. 96, Academic Press, 1981. Zbl0469.30024MR628971
  8. [8] P. Grabowsky & F. Callier – « Admissible observation operators. Semigroup criteria of admissibility », Int. Equ. Oper. Theory25 (1996), p. 182–198. Zbl0856.93021MR1388679
  9. [9] B. Jacob & J. Partington – « The Weiss conjecture on admissibility of observation operators for contraction semigroups », Int. Equ. Oper. Theory40 (2001), p. 231–243. Zbl1031.93107MR1831828
  10. [10] B. Jacob, J. Partington & S. Pott – « Admissible and weakly admissible observation operators for the right shift semigroup », Proc. Edinburgh Math. Soc.45 (2002), p. 353–362. Zbl1176.47065MR1912645
  11. [11] B. Jacob, O. Staffans & H. Zwart – « Weak admissibility does not imply admissibility for analytic semigroups », 2003. Zbl1157.93421MR2020649
  12. [12] B. Jacob & H. Zwart – « Disproof of two conjectures of George Weiss », Preprint, 2000. 
  13. [13] N. Kalton & G. Lancien – « A solution to the problem of L p -maximal regularity », Math. Z.235 (2000), p. 559–568. Zbl1010.47024MR1800212
  14. [14] N. Kalton & L. Weis – « The H calculus and sums of closed operators », Math. Ann.321 (2001), p. 319–345. Zbl0992.47005MR1866491
  15. [15] F. Lancien, G. Lancien & C. Le Merdy – « A joint functional calculus for sectorial operators with commuting resolvents », Proc. London Math. Soc.77 (1998), p. 387–414. Zbl0904.47015MR1635157
  16. [16] C. Le Merdy – « The Weiss conjecture for bounded analytic semigroups », J. London Math. Soc. (2) 67 (2003), p. 715–738. Zbl1064.47045MR1967702
  17. [17] J. Lindenstrauss & L. Tzafriri – Classical Banach spaces II, Springer Verlag, Berlin, 1979. Zbl0403.46022MR540367
  18. [18] A. McIntosh – « Operators which have an H functional calculus », Miniconference on operator theory and partial differential equations, Proc. of CMA, Canberra, vol. 14, 1986, p. 210–231. Zbl0634.47016MR912940
  19. [19] A. McIntosh & A. Yagi – « Operators of type ω without a bounded H functional calculus », Miniconference on operators in analysis, Proc. of CMA, Canberra, vol. 24, 1989, p. 159–172. Zbl0709.47016MR1060121
  20. [20] J. Partington & G. Weiss – « Admissible observation operators for the right shift semigroup », Math. Cont. Signals Systems13 (2000), p. 179–192. Zbl0966.93033MR1784262
  21. [21] L. Weis – « A new approach to maximal L p -regularity », Proc. of the Sixth International Conference on Evolution Equations and their Applications in Physical and Life Sciences (Bad Herrenalb, 1998) (G. Lumer & L. Weis, éds.), Lecture Notes in Pure and Appl. Math., vol. 215, Marcel Dekker, New-York, 2001, p. 195–214. Zbl0957.00037MR1818002
  22. [22] —, « Operator valued Fourier multiplier theorems and maximal regularity », Math. Ann.319 (2001), p. 735–758. Zbl0989.47025MR1825406
  23. [23] G. Weiss – « Admissibility of unbounded control operators », SIAM J. Control Optim.27 (1989), p. 527–545. Zbl0685.93043MR993285
  24. [24] —, « Admissible observation operators for linear semigroups », Israel J. Math.65 (1989), p. 17–43. Zbl0696.47040MR994732
  25. [25] —, « Two conjectures on the admissibility of control operators », Estimation and control of distributed parameter systems, Birkäuser Verlag, 1991, p. 367–378. Zbl0763.93041MR1155659

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.