Khinchin type condition for translation surfaces and asymptotic laws for the Teichmüller flow

Luca Marchese

Bulletin de la Société Mathématique de France (2012)

  • Volume: 140, Issue: 4, page 485-532
  • ISSN: 0037-9484

Abstract

top
We study a diophantine property for translation surfaces, defined in terms of saddle connections and inspired by classical Khinchin condition. We prove that the same dichotomy holds as in Khinchin theorem, then we deduce a sharp estimate on how fast the typical Teichmüller geodesic wanders towards infinity in the moduli space of translation surfaces. Finally we prove some stronger result in genus one.

How to cite

top

Marchese, Luca. "Khinchin type condition for translation surfaces and asymptotic laws for the Teichmüller flow." Bulletin de la Société Mathématique de France 140.4 (2012): 485-532. <http://eudml.org/doc/272608>.

@article{Marchese2012,
abstract = {We study a diophantine property for translation surfaces, defined in terms of saddle connections and inspired by classical Khinchin condition. We prove that the same dichotomy holds as in Khinchin theorem, then we deduce a sharp estimate on how fast the typical Teichmüller geodesic wanders towards infinity in the moduli space of translation surfaces. Finally we prove some stronger result in genus one.},
author = {Marchese, Luca},
journal = {Bulletin de la Société Mathématique de France},
keywords = {translation surfaces; Teichmüller flow; Khinchin condition; interval exchange transformations},
language = {eng},
number = {4},
pages = {485-532},
publisher = {Société mathématique de France},
title = {Khinchin type condition for translation surfaces and asymptotic laws for the Teichmüller flow},
url = {http://eudml.org/doc/272608},
volume = {140},
year = {2012},
}

TY - JOUR
AU - Marchese, Luca
TI - Khinchin type condition for translation surfaces and asymptotic laws for the Teichmüller flow
JO - Bulletin de la Société Mathématique de France
PY - 2012
PB - Société mathématique de France
VL - 140
IS - 4
SP - 485
EP - 532
AB - We study a diophantine property for translation surfaces, defined in terms of saddle connections and inspired by classical Khinchin condition. We prove that the same dichotomy holds as in Khinchin theorem, then we deduce a sharp estimate on how fast the typical Teichmüller geodesic wanders towards infinity in the moduli space of translation surfaces. Finally we prove some stronger result in genus one.
LA - eng
KW - translation surfaces; Teichmüller flow; Khinchin condition; interval exchange transformations
UR - http://eudml.org/doc/272608
ER -

References

top
  1. [1] C. Boissy – « Labeled Rauzy classes and framed translation surfaces », preprint arXiv:1010.5719. Zbl1332.37029MR3112841
  2. [2] C. Boissy & E. Lanneau – « Dynamics and geometry of the Rauzy-Veech induction for quadratic differentials », Ergodic Theory Dynam. Systems29 (2009), p. 767–816. Zbl1195.37030MR2505317
  3. [3] C. Danthony & A. Nogueira – « Involutions linéaires et feuilletages mesurés », C. R. Acad. Sci. Paris Sér. I Math.307 (1988), p. 409–412. Zbl0672.57016MR965808
  4. [4] A. Eskin & H. Masur – « Asymptotic formulas on flat surfaces », Ergodic Theory Dynam. Systems21 (2001), p. 443–478. Zbl1096.37501MR1827113
  5. [5] A. Y. Khintchine – Continued fractions, Translated by Peter Wynn, P. Noordhoff Ltd., 1963. Zbl0117.28503MR161834JFM63.0924.02
  6. [6] M. Kontsevich & A. Zorich – « Connected components of the moduli spaces of Abelian differentials with prescribed singularities », Invent. Math.153 (2003), p. 631–678. Zbl1087.32010MR2000471
  7. [7] L. Marchese – « The Khinchin theorem for interval-exchange transformations », J. Mod. Dyn.5 (2011), p. 123–183. Zbl1219.37005MR2787600
  8. [8] S. Marmi, P. Moussa & J.-C. Yoccoz – « The cohomological equation for Roth-type interval exchange maps », J. Amer. Math. Soc.18 (2005), p. 823–872. Zbl1112.37002MR2163864
  9. [9] H. Masur – « Interval exchange transformations and measured foliations », Ann. of Math.115 (1982), p. 169–200. Zbl0497.28012MR644018
  10. [10] —, « Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential », in Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ., vol. 10, Springer, 1988, p. 215–228. Zbl0661.30034MR955824
  11. [11] —, « Logarithmic law for geodesics in moduli space », in Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991), Contemp. Math., vol. 150, Amer. Math. Soc., 1993, p. 229–245. Zbl0790.32022MR1234267
  12. [12] C. Series – « The modular surface and continued fractions », J. London Math. Soc.31 (1985), p. 69–80. Zbl0545.30001MR810563
  13. [13] D. Sullivan – « Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics », Acta Math.149 (1982), p. 215–237. Zbl0517.58028MR688349
  14. [14] W. A. Veech – « Gauss measures for transformations on the space of interval exchange maps », Ann. of Math.115 (1982), p. 201–242. Zbl0486.28014MR644019
  15. [15] J.-C. Yoccoz – « Petits diviseurs en dimension 1 », Astérisque 231 (1994). Zbl0836.30001
  16. [16] —, « Interval exchange maps and translation surfaces », lecture notes of the CMI summer school course, Centro di ricerca matematica Ennio de Giorgi, Pisa, June-July 2007. 
  17. [17] A. Zorich – « Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents », Ann. Inst. Fourier (Grenoble) 46 (1996), p. 325–370. Zbl0853.28007MR1393518

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.