Loading [MathJax]/extensions/MathZoom.js
We show that the Cartesian product of three hereditarily infinite-dimensional compact metric spaces is never hereditarily infinite-dimensional. It is quite surprising that the proof of this fact (and this is the only proof known to the author) essentially relies on algebraic topology.
Nielsen theory, originally developed as a homotopy-theoretic approach to fixed point theory, has been translated and extended to various other problems, such as the study of periodic points, coincidence points and roots. In this paper, the techniques of Nielsen theory are applied to the study of intersections of maps. A Nielsen-type number, the Nielsen intersection number NI(f,g), is introduced, and shown to have many of the properties analogous to those of the Nielsen fixed point number. In particular,...
In this short note we compute the Chas-Sullivan BV-algebra structure on the singular homology of the free loop space of complex projective spaces. We compare this result with computations in Hochschild cohomology.
We use the computational power of rational homotopy theory to provide an explicit cochain model for the loop product and the string bracket of a simply connected closed manifold .
We prove that the loop homology of is isomorphic to the Hochschild cohomology of the cochain algebra with coefficients in . Some explicit computations of the loop product and
the string bracket are given.
Currently displaying 1 –
13 of
13