Explicit Teichmüller curves with complementary series

Carlos Matheus; Gabriela Weitze-Schmithüsen

Bulletin de la Société Mathématique de France (2013)

  • Volume: 141, Issue: 4, page 557-602
  • ISSN: 0037-9484

Abstract

top
We construct an explicit family of arithmetic Teichmüller curves 𝒞 2 k , k , supporting SL ( 2 , ) -invariant probabilities μ 2 k such that the associated SL ( 2 , ) -representation on  L 2 ( 𝒞 2 k , μ 2 k ) has complementary series for every k 3 . Actually, the size of the spectral gap along this family goes to zero. In particular, the Teichmüller geodesic flow restricted to these explicit arithmetic Teichmüller curves 𝒞 2 k has arbitrarily slow rate of exponential mixing.

How to cite

top

Matheus, Carlos, and Weitze-Schmithüsen, Gabriela. "Explicit Teichmüller curves with complementary series." Bulletin de la Société Mathématique de France 141.4 (2013): 557-602. <http://eudml.org/doc/272671>.

@article{Matheus2013,
abstract = {We construct an explicit family of arithmetic Teichmüller curves $\mathcal \{C\}_\{2k\}$, $k\in \mathbb \{N\}$, supporting $\textrm \{SL\}(2,\mathbb \{R\})$-invariant probabilities $\mu _\{2k\}$ such that the associated $\textrm \{SL\}(2,\mathbb \{R\})$-representation on $L^2(\mathcal \{C\}_\{2k\}, \mu _\{2k\})$ has complementary series for every $k\ge 3$. Actually, the size of the spectral gap along this family goes to zero. In particular, the Teichmüller geodesic flow restricted to these explicit arithmetic Teichmüller curves $\mathcal \{C\}_\{2k\}$ has arbitrarily slow rate of exponential mixing.},
author = {Matheus, Carlos, Weitze-Schmithüsen, Gabriela},
journal = {Bulletin de la Société Mathématique de France},
keywords = {moduli spaces; abelian differentials; translation surfaces; square-tiled surfaces; teichmüller curves; spectral gap; rate of mixing; complementary series},
language = {eng},
number = {4},
pages = {557-602},
publisher = {Société mathématique de France},
title = {Explicit Teichmüller curves with complementary series},
url = {http://eudml.org/doc/272671},
volume = {141},
year = {2013},
}

TY - JOUR
AU - Matheus, Carlos
AU - Weitze-Schmithüsen, Gabriela
TI - Explicit Teichmüller curves with complementary series
JO - Bulletin de la Société Mathématique de France
PY - 2013
PB - Société mathématique de France
VL - 141
IS - 4
SP - 557
EP - 602
AB - We construct an explicit family of arithmetic Teichmüller curves $\mathcal {C}_{2k}$, $k\in \mathbb {N}$, supporting $\textrm {SL}(2,\mathbb {R})$-invariant probabilities $\mu _{2k}$ such that the associated $\textrm {SL}(2,\mathbb {R})$-representation on $L^2(\mathcal {C}_{2k}, \mu _{2k})$ has complementary series for every $k\ge 3$. Actually, the size of the spectral gap along this family goes to zero. In particular, the Teichmüller geodesic flow restricted to these explicit arithmetic Teichmüller curves $\mathcal {C}_{2k}$ has arbitrarily slow rate of exponential mixing.
LA - eng
KW - moduli spaces; abelian differentials; translation surfaces; square-tiled surfaces; teichmüller curves; spectral gap; rate of mixing; complementary series
UR - http://eudml.org/doc/272671
ER -

References

top
  1. [1] J. Adámek, H. Herrlich & G. E. Strecker – Abstract and concrete categories, Pure and Applied Mathematics (New York), John Wiley & Sons Inc., 1990. Zbl0695.18001MR1051419
  2. [2] A. Avila & S. Gouëzel – « Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow », Ann. of Math.178 (2013), p. 385–442. Zbl1287.58016MR3071503
  3. [3] A. Avila, S. Gouëzel & J.-C. Yoccoz – « Exponential mixing for the Teichmüller flow », Publ. Math. I.H.É.S. 104 (2006), p. 143–211. Zbl1263.37051MR2264836
  4. [4] N. Bergeron – Le spectre des surfaces hyperboliques, Savoirs Actuels, EDP Sciences, 2011. MR2857626
  5. [5] P. Buser – « A note on the isoperimetric constant », Ann. Sci. École Norm. Sup.15 (1982), p. 213–230. Zbl0501.53030MR683635
  6. [6] J. S. Ellenberg & D. B. McReynolds – « Arithmetic Veech sublattices of SL ( 2 , 𝐙 ) », Duke Math. J.161 (2012), p. 415–429. MR2881227
  7. [7] A. Eskin & M. Mirzakhani – « Invariant and stationary measures for the S L ( 2 , ) action on moduli space », preprint http://www.math.uchicago.edu/~eskin/measures.pdf, 2012. 
  8. [8] E. Gutkin & C. Judge – « Affine mappings of translation surfaces: geometry and arithmetic », Duke Math. J.103 (2000), p. 191–213. MR1760625
  9. [9] P. Hubert & S. Lelièvre – « Prime arithmetic Teichmüller discs in ( 2 ) », Israel J. Math.151 (2006), p. 281–321. MR2214127
  10. [10] P. Hubert & T. A. Schmidt – « An introduction to Veech surfaces », in Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, p. 501–526. MR2186246
  11. [11] M. Kontsevich & A. Zorich – « Connected components of the moduli spaces of Abelian differentials with prescribed singularities », Invent. Math.153 (2003), p. 631–678. Zbl1087.32010MR2000471
  12. [12] A. Lubotzky – Discrete groups, expanding graphs and invariant measures, Progress in Math., vol. 125, Birkhäuser, 1994. MR1308046
  13. [13] H. Masur – « Interval exchange transformations and measured foliations », Ann. of Math.115 (1982), p. 169–200. Zbl0497.28012MR644018
  14. [14] M. Möller – « Teichmüller curves, Galois actions and G T ^ -relations », Math. Nachr.278 (2005), p. 1061–1077. Zbl1081.14039
  15. [15] F. Nisbach – « The Galois action on origami curves and a special class of origamis », Dissertation, 2011, http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025252. 
  16. [16] M. Ratner – « The rate of mixing for geodesic and horocycle flows », Ergodic Theory Dynam. Systems7 (1987), p. 267–288. Zbl0623.22008MR896798
  17. [17] G. Schmithüsen – « An algorithm for finding the Veech group of an origami », Experiment. Math.13 (2004), p. 459–472. Zbl1078.14036
  18. [18] —, « Veech groups of origamis », Dissertation, Universität Karlsruhe, 2005. 
  19. [19] A. Selberg – « On the estimation of Fourier coefficients of modular forms », in Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., 1965, p. 1–15. MR182610
  20. [20] W. A. Veech – « Gauss measures for transformations on the space of interval exchange maps », Ann. of Math.115 (1982), p. 201–242. Zbl0486.28014MR644019
  21. [21] —, « The Teichmüller geodesic flow », Ann. of Math.124 (1986), p. 441–530. Zbl0658.32016
  22. [22] A. Zorich – « Flat surfaces », in Frontiers in number theory, physics, and geometry. I, Springer, 2006, p. 437–583. MR2261104

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.