Explicit Teichmüller curves with complementary series
Carlos Matheus; Gabriela Weitze-Schmithüsen
Bulletin de la Société Mathématique de France (2013)
- Volume: 141, Issue: 4, page 557-602
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. Adámek, H. Herrlich & G. E. Strecker – Abstract and concrete categories, Pure and Applied Mathematics (New York), John Wiley & Sons Inc., 1990. Zbl0695.18001MR1051419
- [2] A. Avila & S. Gouëzel – « Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow », Ann. of Math.178 (2013), p. 385–442. Zbl1287.58016MR3071503
- [3] A. Avila, S. Gouëzel & J.-C. Yoccoz – « Exponential mixing for the Teichmüller flow », Publ. Math. I.H.É.S. 104 (2006), p. 143–211. Zbl1263.37051MR2264836
- [4] N. Bergeron – Le spectre des surfaces hyperboliques, Savoirs Actuels, EDP Sciences, 2011. MR2857626
- [5] P. Buser – « A note on the isoperimetric constant », Ann. Sci. École Norm. Sup.15 (1982), p. 213–230. Zbl0501.53030MR683635
- [6] J. S. Ellenberg & D. B. McReynolds – « Arithmetic Veech sublattices of », Duke Math. J.161 (2012), p. 415–429. MR2881227
- [7] A. Eskin & M. Mirzakhani – « Invariant and stationary measures for the action on moduli space », preprint http://www.math.uchicago.edu/~eskin/measures.pdf, 2012.
- [8] E. Gutkin & C. Judge – « Affine mappings of translation surfaces: geometry and arithmetic », Duke Math. J.103 (2000), p. 191–213. MR1760625
- [9] P. Hubert & S. Lelièvre – « Prime arithmetic Teichmüller discs in », Israel J. Math.151 (2006), p. 281–321. MR2214127
- [10] P. Hubert & T. A. Schmidt – « An introduction to Veech surfaces », in Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, p. 501–526. MR2186246
- [11] M. Kontsevich & A. Zorich – « Connected components of the moduli spaces of Abelian differentials with prescribed singularities », Invent. Math.153 (2003), p. 631–678. Zbl1087.32010MR2000471
- [12] A. Lubotzky – Discrete groups, expanding graphs and invariant measures, Progress in Math., vol. 125, Birkhäuser, 1994. MR1308046
- [13] H. Masur – « Interval exchange transformations and measured foliations », Ann. of Math.115 (1982), p. 169–200. Zbl0497.28012MR644018
- [14] M. Möller – « Teichmüller curves, Galois actions and -relations », Math. Nachr.278 (2005), p. 1061–1077. Zbl1081.14039
- [15] F. Nisbach – « The Galois action on origami curves and a special class of origamis », Dissertation, 2011, http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025252.
- [16] M. Ratner – « The rate of mixing for geodesic and horocycle flows », Ergodic Theory Dynam. Systems7 (1987), p. 267–288. Zbl0623.22008MR896798
- [17] G. Schmithüsen – « An algorithm for finding the Veech group of an origami », Experiment. Math.13 (2004), p. 459–472. Zbl1078.14036
- [18] —, « Veech groups of origamis », Dissertation, Universität Karlsruhe, 2005.
- [19] A. Selberg – « On the estimation of Fourier coefficients of modular forms », in Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., 1965, p. 1–15. MR182610
- [20] W. A. Veech – « Gauss measures for transformations on the space of interval exchange maps », Ann. of Math.115 (1982), p. 201–242. Zbl0486.28014MR644019
- [21] —, « The Teichmüller geodesic flow », Ann. of Math.124 (1986), p. 441–530. Zbl0658.32016
- [22] A. Zorich – « Flat surfaces », in Frontiers in number theory, physics, and geometry. I, Springer, 2006, p. 437–583. MR2261104