Explicit Teichmüller curves with complementary series
Carlos Matheus; Gabriela Weitze-Schmithüsen
Bulletin de la Société Mathématique de France (2013)
- Volume: 141, Issue: 4, page 557-602
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topMatheus, Carlos, and Weitze-Schmithüsen, Gabriela. "Explicit Teichmüller curves with complementary series." Bulletin de la Société Mathématique de France 141.4 (2013): 557-602. <http://eudml.org/doc/272671>.
@article{Matheus2013,
abstract = {We construct an explicit family of arithmetic Teichmüller curves $\mathcal \{C\}_\{2k\}$, $k\in \mathbb \{N\}$, supporting $\textrm \{SL\}(2,\mathbb \{R\})$-invariant probabilities $\mu _\{2k\}$ such that the associated $\textrm \{SL\}(2,\mathbb \{R\})$-representation on $L^2(\mathcal \{C\}_\{2k\}, \mu _\{2k\})$ has complementary series for every $k\ge 3$. Actually, the size of the spectral gap along this family goes to zero. In particular, the Teichmüller geodesic flow restricted to these explicit arithmetic Teichmüller curves $\mathcal \{C\}_\{2k\}$ has arbitrarily slow rate of exponential mixing.},
author = {Matheus, Carlos, Weitze-Schmithüsen, Gabriela},
journal = {Bulletin de la Société Mathématique de France},
keywords = {moduli spaces; abelian differentials; translation surfaces; square-tiled surfaces; teichmüller curves; spectral gap; rate of mixing; complementary series},
language = {eng},
number = {4},
pages = {557-602},
publisher = {Société mathématique de France},
title = {Explicit Teichmüller curves with complementary series},
url = {http://eudml.org/doc/272671},
volume = {141},
year = {2013},
}
TY - JOUR
AU - Matheus, Carlos
AU - Weitze-Schmithüsen, Gabriela
TI - Explicit Teichmüller curves with complementary series
JO - Bulletin de la Société Mathématique de France
PY - 2013
PB - Société mathématique de France
VL - 141
IS - 4
SP - 557
EP - 602
AB - We construct an explicit family of arithmetic Teichmüller curves $\mathcal {C}_{2k}$, $k\in \mathbb {N}$, supporting $\textrm {SL}(2,\mathbb {R})$-invariant probabilities $\mu _{2k}$ such that the associated $\textrm {SL}(2,\mathbb {R})$-representation on $L^2(\mathcal {C}_{2k}, \mu _{2k})$ has complementary series for every $k\ge 3$. Actually, the size of the spectral gap along this family goes to zero. In particular, the Teichmüller geodesic flow restricted to these explicit arithmetic Teichmüller curves $\mathcal {C}_{2k}$ has arbitrarily slow rate of exponential mixing.
LA - eng
KW - moduli spaces; abelian differentials; translation surfaces; square-tiled surfaces; teichmüller curves; spectral gap; rate of mixing; complementary series
UR - http://eudml.org/doc/272671
ER -
References
top- [1] J. Adámek, H. Herrlich & G. E. Strecker – Abstract and concrete categories, Pure and Applied Mathematics (New York), John Wiley & Sons Inc., 1990. Zbl0695.18001MR1051419
- [2] A. Avila & S. Gouëzel – « Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow », Ann. of Math.178 (2013), p. 385–442. Zbl1287.58016MR3071503
- [3] A. Avila, S. Gouëzel & J.-C. Yoccoz – « Exponential mixing for the Teichmüller flow », Publ. Math. I.H.É.S. 104 (2006), p. 143–211. Zbl1263.37051MR2264836
- [4] N. Bergeron – Le spectre des surfaces hyperboliques, Savoirs Actuels, EDP Sciences, 2011. MR2857626
- [5] P. Buser – « A note on the isoperimetric constant », Ann. Sci. École Norm. Sup.15 (1982), p. 213–230. Zbl0501.53030MR683635
- [6] J. S. Ellenberg & D. B. McReynolds – « Arithmetic Veech sublattices of », Duke Math. J.161 (2012), p. 415–429. MR2881227
- [7] A. Eskin & M. Mirzakhani – « Invariant and stationary measures for the action on moduli space », preprint http://www.math.uchicago.edu/~eskin/measures.pdf, 2012.
- [8] E. Gutkin & C. Judge – « Affine mappings of translation surfaces: geometry and arithmetic », Duke Math. J.103 (2000), p. 191–213. MR1760625
- [9] P. Hubert & S. Lelièvre – « Prime arithmetic Teichmüller discs in », Israel J. Math.151 (2006), p. 281–321. MR2214127
- [10] P. Hubert & T. A. Schmidt – « An introduction to Veech surfaces », in Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, p. 501–526. MR2186246
- [11] M. Kontsevich & A. Zorich – « Connected components of the moduli spaces of Abelian differentials with prescribed singularities », Invent. Math.153 (2003), p. 631–678. Zbl1087.32010MR2000471
- [12] A. Lubotzky – Discrete groups, expanding graphs and invariant measures, Progress in Math., vol. 125, Birkhäuser, 1994. MR1308046
- [13] H. Masur – « Interval exchange transformations and measured foliations », Ann. of Math.115 (1982), p. 169–200. Zbl0497.28012MR644018
- [14] M. Möller – « Teichmüller curves, Galois actions and -relations », Math. Nachr.278 (2005), p. 1061–1077. Zbl1081.14039
- [15] F. Nisbach – « The Galois action on origami curves and a special class of origamis », Dissertation, 2011, http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025252.
- [16] M. Ratner – « The rate of mixing for geodesic and horocycle flows », Ergodic Theory Dynam. Systems7 (1987), p. 267–288. Zbl0623.22008MR896798
- [17] G. Schmithüsen – « An algorithm for finding the Veech group of an origami », Experiment. Math.13 (2004), p. 459–472. Zbl1078.14036
- [18] —, « Veech groups of origamis », Dissertation, Universität Karlsruhe, 2005.
- [19] A. Selberg – « On the estimation of Fourier coefficients of modular forms », in Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., 1965, p. 1–15. MR182610
- [20] W. A. Veech – « Gauss measures for transformations on the space of interval exchange maps », Ann. of Math.115 (1982), p. 201–242. Zbl0486.28014MR644019
- [21] —, « The Teichmüller geodesic flow », Ann. of Math.124 (1986), p. 441–530. Zbl0658.32016
- [22] A. Zorich – « Flat surfaces », in Frontiers in number theory, physics, and geometry. I, Springer, 2006, p. 437–583. MR2261104
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.