Exponential mixing for the Teichmüller flow
Artur Avila; Sébastien Gouëzel; Jean-Christophe Yoccoz
Publications Mathématiques de l'IHÉS (2006)
- Volume: 104, page 143-211
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topReferences
top- 1. A. Avila and G. Forni, Weak mixing for interval exchange transformations and translation flows, preprint (www.arXiv.org), to appear in Ann. Math. Zbl1136.37003MR2299743
- 2. A. Avila and M. Viana, Simplicity of Lyapunov spectra: proof of the Zorich–Kontsevich conjecture, to appear in Acta Math. Zbl1143.37001MR2316268
- 3. J. Aaronson, An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, vol. 50. American Mathematical Society, Providence, RI, 1997. Zbl0882.28013MR1450400
- 4. J. Athreya, Quantitative recurrence and large deviations for Teichmüller geodesic flow, Geom. Dedicata, 119 (2006), 121-140 Zbl1108.32007MR2247652
- 5. V. Baladi, B. Vallée, Exponential decay of correlations for surface semi-flows without finite Markov partitions, Proc. Amer. Math. Soc., 133 (2005), 865-874 Zbl1055.37027MR2113938
- 6. A. Bufetov, Decay of correlations for the Rauzy–Veech–Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichmüller flow on the moduli space of abelian differentials, J. Amer. Math. Soc., 19 (2006), 579-623 Zbl1100.37002MR2220100
- 7. D. Dolgopyat, On decay of correlations in Anosov flows, Ann. Math. (2), 147 (1998), 357-390 Zbl0911.58029MR1626749
- 8. A. Eskin, H. Masur, Asymptotic formulas on flat surfaces, Ergod. Theory Dynam. Syst., 21 (2001), 443-478 Zbl1096.37501MR1827113
- 9. G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. Math. (2), 155 (2002), 1-103 Zbl1034.37003MR1888794
- 10. H. Hennion, Sur un théorème spectral et son application aux noyaux lipschitziens, Proc. Amer. Math. Soc., 118 (1993), 627-634 Zbl0772.60049MR1129880
- 11. S.P. Kerckhoff, Simplicial systems for interval exchange maps and measured foliations, Ergod. Theory Dynam. Syst., 5 (1985), 257-271 Zbl0597.58024MR796753
- 12. M. Kontsevich, A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678 Zbl1087.32010MR2000471
- 13. G.A. Margulis, A. Nevo, E.M. Stein, Analogs of Wiener’s ergodic theorems for semisimple Lie groups. II, Duke Math. J., 103 (2000), 233-259 Zbl0978.22006
- 14. S. Marmi, P. Moussa, J.-C. Yoccoz, The cohomological equation for Roth type interval exchange transformations, J. Amer. Math. Soc., 18 (2005), 823-872 Zbl1112.37002MR2163864
- 15. H. Masur, Interval exchange transformations and measured foliations, Ann. Math. (2), 115 (1982), 169-200 Zbl0497.28012MR644018
- 16. M. Ratner, The rate of mixing for geodesic and horocycle flows, Ergod. Theory Dynam. Syst., 7 (1987), 267-288 Zbl0623.22008MR896798
- 17. G. Rauzy, Echanges d’intervalles et transformations induites, Acta Arith., 34 (1979), 315-328 Zbl0414.28018
- 18. W. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. Math. (2), 115 (1982), 201-242 Zbl0486.28014MR644019
- 19. W. Veech, The Teichmüller geodesic flow, Ann. Math. (2), 124 (1986), 441-530 Zbl0658.32016MR866707
- 20. A. Zorich, Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents, Ann. Inst. Fourier, 46 (1996), 325-370 Zbl0853.28007MR1393518